
1

UNIT I

FOUNDATIONS OF HCI

 The Human: I/O channels – Memory – Reasoning and problem solving; The computer: Devices Memory – processing

and networks; Interaction: Models – frameworks – Ergonomics – styles elements – interactivity- Paradigms.

HCI (human-computer interaction)

Study of how people interact with computers and to what extent computers are or are not developed for successful

interaction with human beings

• Information i/o

visual, auditory, haptic, movement

• Information stored in memory

sensory, short-term, long-term

• Information processed and applied

reasoning, problem solving, skill, error

The Human

I/O channels

❖ A person's interaction with the outside world occurs through information being received and sent: input and output.

❖ In an interaction with a computer the user receives information that is output by the computer, and responds by

providing input to the computer the user's output become the computer's input and vice versa.

❖ A particular channel may have a primary role as input or output in the interaction, it is more than likely that it is also

used in the other role.

 For example, sight may be used primarily in receiving information from the computer, but it can also be used to provide

information to the computer, for example by fixating on a particular screen point when using an eye gaze system.

❖ Input in the human occurs mainly through the senses and output through the motor control of the effectors.

Five senses: sight, hearing, touch, taste and smell

Taste and smell do not currently play a significant role in HCI

❖ Similarly there are a number of effectors, including the limbs, fingers, eyes, head and vocal system.

In the interaction with the computer, the fingers play the primary role, through typing or mouse control, with some use of

voice, and eye, head and body position.

 Imagine using a personal computer with a mouse and a keyboard.The application you

are using has a graphical interface, with menus, icons and windows.

 In your interaction with this system you receive Information primarily by sight, from what appears on the screen.

However, you may also receive information by ear: For example, the computer may `beep' at you if you make a mistake or

to draw attention to something, or there may be a voice commentary in a multimedia presentation

 Vision

Human vision Highly complex activity with range of physical and perceptual limitations, yet it is the primary

source of information for the average person. We can roughly divide visual perception into two stages.

➢ the physical reception of the stimulus from outside world,

➢ the processing and interpretation of that stimulus

The human eye

➢ Vision begins with light.

 The eye ismechanism for receiving light and Transforming it into electrical energy.

➢ Light is reflected from objects in the world and their image is focused upside down on the back of the eye.

2

➢ The receptors in the eye transform it into electrical signals, which are passed to brain

The cornea and lens at the front of eye focus the light into a sharp image on the back of the eye, the retina. The retina is light

sensitive and contains two types of photoreceptor: rods and cones.

Rods

 Highly sensitive to light and therefore allow us to see under a low level of illumination.

 It is unable to resolve fine detail and are subject to light saturation.

 It is the reason for the temporary blindness we get when moving from a darkened room into sunlight: the rods have

been active and are saturated by the sudden light.

 Cones

 Cones are the second type of receptor in the eye.

 They are less sensitive to light than the rods and can therefore tolerate more light.

 There are three types of cone, each sensitive to a different wavelength of light.

 This allows color vision. The eye has approximately 6 million cones, mainly concentrated on the fovea

 Fovea

 Fovea is a small area of the retina on which images are fixated.

Blind spot

 Blind spot is also situated at retina.

 Although the retina is mainly covered with photoreceptors there is one blind spot where the optic nerve enter the eye.

 The blind spot has no rods or cones, yet our visual system compensates for this so that in normal circumstances we are

unaware of it.

Nerve cells

 The retina also has specialized nerve cells called ganglion cells.

 There are two types:

 X-cells: These are concentrated in the fovea and are responsible for the early detection of pattern.

 Y-cells : These are more widely distributed in the retina and are responsible for the early detection of movement.

Visual perception

 Understanding the basic construction of the eye goes some way to explaining the physical mechanism of vision but

visual perception is more than this.

 The information received by the visual apparatus must be filtered and passed to processing elements which allow us to

recognize coherent scenes, disambiguate relative distances and differentiate color.

 Let us see how we perceive size and depth, brightness and color, each of which is crucial to the design of effective visual

interfaces.

 Perceiving size and depth

Imagine you are standing on a hilltop. Beside you on the summit you can see rocks, sheep and a small tree.

 We can identify similar objects regardless of the fact that they appear to us to be vastly different sizes. In fact, we can

use this information to judge distance. So how does the eye perceive size, depth and relative distances?

 To understand this we must consider how the image appears on the retina.

 As we mentioned, reflected light from the object forms an upside-down image on the retina. The size of that image is

specified as visual angle.

Figure1.2 illustrates how the visual angle is calculated

3

If were to draw a line from the top of the object to a central point on the front of the eye and a second line from the bottom

of the object to the same point, the visual angle of the object is the angle between these two lines.

 Visual angle is affected by both the size of the object and its distance from the eye. Therefore if two objects are at the same

distance, the larger one will have the larger visual angle.

 The visual angle indicates how much of the field of view is taken by the object. The visual angle measurement is

given in either degrees or minutes of arc, where 1 degree is equivalent to 60 minutes of arc, and 1 minute of arc to 60

seconds of arc.

 Visual acuity is the ability of a person to perceive fine detail. A number of measurements have been established to

test visual acuity, most of which are included in standard eye tests.

 For example, a person with normal vision can detect a single line if it has a visual angle of 0.5 seconds of arc.

Spaces between lines can be detected at 30 seconds to 1 minute of visual arc. These represent the limits of human visual

acuity.

Perceiving brightness

 A second step of visual perception is the perception of brightness.

 Brightness

A subjective reaction to level of light. It is affected by luminance, which is the amount of light is emitted by an object.

The luminance of an object is dependent on the amount of light falling on the object’s surface and its reflective properties.

 Contrast is related to luminance:

It is a function of the luminance of an object and the luminance of its background. In dim lighting,

the rods predominate vision. Since there are fewer rods on the fovea, object in low lighting can be seen easily when fixated

upon, and are more visible in peripheral vision. In normal lighting, the cones take over.

Perceiving color:

A third factor that we need to consider is perception of color.Color is usually regarded as being made up of three

components: hue, intensity and saturation.

 Hue is determined by the spectral wavelength of the light. Blues have short wavelengths, greens medium and

reds long. Approximately 150 different hues can be discriminated by the average person.

 Intensity is the brightness of the color, and saturation is the amount of whiteness in the color. By varying these

two, we can perceive in the region of 7 million different colors. The eye perceives color because the cones are sensitive to

light of different wavelengths. There are three different types of cone, each sensitive to a different color (blue, green and

red).

Color vision is best in the fovea, and worst at the periphery where rods predominate. It should also be noted that only 3–4%

of the fovea is occupied by cones which are sensitive to blue light, making blue acuity lower.

The capabilities and limitations of visual processing

4

 Visual processing involves the transformation and interpretation of a complete image, from the light that is

thrown onto the retina.

 For example, if we know that an object is a particular size, we will perceive it as that size no matter how far it is

from us.

 Visual processing compensates for the movement of the image on the retina which occurs as we move around

and as the object which we see moves.

 Although the retinal image is moving, the image that we perceive is stable. Similarly, color and brightness of

objects are perceived as constant, in spite of changes in luminance

Consider Figure1.6 Which line is longer? Most people when presented with this will say that the top line is longer than the

bottom. In fact, the two lines are the same length. This may be due to a false application of the law of size constancy: the top

line appears like a concave edge, the bottom like a convex edge. The former therefore seems further away than the latter and

is therefore scaled to appear larger.

 A similar illusion is the Ponzo illusion (Figure1.7). Here the top line appears longer, owing to the distance

effect, although both lines are the same length. These illusions demonstrate that our perception of size is not completely

reliable

 Reading

 There are several stages in the reading process.

1. First, the visual pattern of the word on the page is perceived.

2. It is then decoded with reference to an internal representation of language.

3. The final stages of language processing include syntactic and semantic analysis and operate on phrases or

sentences.

During reading, the eye makes jerky movements called saccades followed by fixations.

5

 Perception occurs during the fixation periods, which account for approximately 94% of the time elapsed.

 The eye moves backwards over the text as well as forwards, in what are known as regressions.

If the text is complex there will be more regressions.

Adults read approximately 250 words a minute.

 It is unlikely that words are scanned serially, character by character, since experiments have shown that words

can be recognized as quickly as single characters.

 Instead, familiar words are recognized using word shape.

 The speed at which text can be read is a measure of its legibility. Experiments have shown that standard font

sizes of 9 to 12 points are equally legible, given proportional spacing between lines.

 Similarly line lengths of between 2.3 and 5.2 inches (58 and 132 mm) are equally legible.

 This is thought to be due to a number of factors including a longer line length, fewer words to a page,

 The Human ear

• Physical apparatus:

outer ear – protects inner and amplifies sound

middle ear – transmits sound waves as vibrations to inner ear

inner ear – chemical transmitters are released and cause impulses in auditory nerve

• Sound

pitch–sound frequency

loudness –amplitude

timbre–type or quality

• Humans can hear frequencies from 20Hz to 15kHz less accurate distinguishing high frequencies than low.

• Auditory system filters sounds can attend to sounds over background noise.

 for example, the cocktail party phenomenon.

 Touch

The third and last of the senses that we will consider is touch or haptic perception.

➢ Touch provides us with vital information about our environment.

➢ It tells us when we touch something hot or cold, and can therefore act as a warning.

➢ It also provides us with feedback when we attempt to lift an object,

 For example. Consider the act of picking up a glass of water If we could only see the glass and not feel when our hand

made contact with it or feel its shape, the speed and accuracy of the action would be reduced. This is the experience of users

of certain virtual reality games: they can see the computer-generated objects which they need to manipulate but they have no

physical sensation of touching them.

6

• Provides important feedback about environment.

• May be key sense for someone who is visually impaired.

• Stimulus received via receptors in the skin:

thermoreceptors – heat and cold

nociceptors – pain

mechanoreceptors – pressure (some instant, some continuous)

Rapidly adapting mechanoreceptors respond to immediate pressure as the skin is indented. These receptors also react more

quickly with increased pressure.

However, they stop responding if continuous pressure is applied. Slowly adapting mechanoreceptors respond to

continuously applied pressure.

Movement

➢ A simple action such as hitting a button in response to a question involves a number of processing stages.

➢ The stimulus (of the question) is received through the sensory receptors and transmitted to the brain.

➢ The question is processed and a valid response generated. The brain then tells the appropriate muscles to respond.

➢ Each of these stages takes time, which can be roughly divided into reaction time and movement time.

➢ Movement time is dependent largely on the physical characteristics of the subjects: their age and fitness, for example.

➢ Reaction time varies according to the sensory channel through which the stimulus is received.

 A person can react to an auditory signal in approximately 150 ms, to a visual signal in 200 ms and to pain in 700 ms.

Factors such as skill or practice can reduce reaction time, and fatigue can increase it.

A second measure of motor skill is accuracy. Speed and accuracy of movement are important considerations in the design of

interactive systems, primarily in terms of the time taken to move to a particular target on a screen. The target may be a

button, a menu item or an icon, for example.

The time taken to hit a target is a function of the size of the target and the distance that has to be moved. This is formalized

in Fitts’ law of this formula, which have varying constants, but they are all very similar.

One common form is Movement time = a + b log2(distance/size + 1)

where a and b are empirically determined constants.

HUMAN MEMORY

Short-term memory

➢ Short-term memory or working memory acts as a ‘scratch-pad’ for temporary recall of information.

➢ It is used to store information which is only required fleetingly. For example, calculate the multiplication 35 × 6 in your

 head. The chances are that you will have done this calculation in stages, perhaps 5 × 6 and then 30 × 6 and added the

 results; or you may have used the fact that 6 = 2 × 3 and calculated 2 × 35 = 70 followed by 3 × 70.

To perform calculations such as this we need to store the intermediate stages for use later. Or consider reading. In order to

comprehend this sentence you need to hold in your mind the beginning of the sentence as you read the rest. Both of these

tasks use short-term memory.

7

➢ Short-term memory can be accessed rapidly, in the order of 70 ms. However, it also decays rapidly, meaning that

information can only be held there temporarily, in the order of 200 ms.

Short-term memory also has a limited capacity. There are two basic methods for measuring memory capacity. The first

involves determining the length of a sequence which can be remembered in order. The second allows items to be freely

recalled in any order. Using the first measure, the average person can remember 7 ±2 digits.

Long-term memory

• If short-term memory is our working memory or ‘scratch-pad’, long-term memory is our main resource.

• Here we store factual information, experiential knowledge, procedural rules of behavior – in fact, everything that we

‘know’. It differs from short-term memory in a number of significant ways.

First, it has a huge, if not unlimited, capacity.

Secondly, it has a relatively slow access time of approximately a tenth of a second. Thirdly, forgetting occurs more slowly

in long-term memory, if at all. These distinctions provide further evidence of a memory structure with several parts. Long-

term memory is intended for the long-term storage of information. Information is placed there from working memory

through rehearsal. Unlike working memory there is little decay: long-term recall after minutes is the same as that after hours

or days.

 Long-term memory structure

Two types of long-term memory: Episodic memory and semantic memory.

❖ Episodic memory represents our memory of events and experiences in a serial form. It is from this memory that we

can reconstruct the actual events that took place at a given point in our lives.

❖ Semantic memory, on the other hand, is a structured record of facts, concepts and skills that we have acquired. The

information in semantic memory is derived from that in our episodic memory, such that we can learn new facts or concepts

from our experiences. Semantic memory is structured in some way to allow access to information, representation of

relationships between pieces of information, and inference. One model for the way in which semantic memory is

structured is as a network. Items are associated to each other in classes, and may inherit attributes from parent classes.

This model is known as a semantic network.

• Semantic networks represent the associations and relationships between single items in memory. However, they do

not allow us to model the representation of more complex objects or events, which are perhaps composed of a number of

items or activities. Structured representations such as frames and scripts organize information into data structures. Slots

in these structures allow attribute values to be added. Frame slots may contain default, fixed or variable information.

A frame is instantiated when the slots are filled with appropriate values. Frames and scripts can be linked together in

networks to represent hierarchical structured knowledge. Returning to the ‘dog’ domain, a frame-based representation

of the knowledge may look something like Figure 1.12

8

Scripts attempt to model the representation of stereotypical knowledge about situations.

Consider the following sentence:

John took his dog to the surgery. After seeing the vet, he left.

From our knowledge of the activities of dog owners and vets, we may fill in a substantial amount of detail. The animal was

ill. The vet examined and treated the animal. John paid for the treatment before leaving.

A script represents this default or stereotypical information, allowing us to interpret partial descriptions or cues fully. A

script comprises a number of elements, which, like slots, can be filled with appropriate information:

Entry conditions Conditions that must be satisfied for the script to be activated.

Result Conditions that will be true after the script is terminated.

Props Objects involved in the events described in the script.

Roles Actions performed by particular participants.

Scenes The sequences of events that occur.

Tracks A variation on the general pattern representing an alternative scenario.

An example script for going to the vet is shown in Figure 1.13

A final type of knowledge representation which we hold in memory is the representation of procedural knowledge, our

knowledge of how to do something. A common model for this is the production system. Condition–action rules are stored in

long-term memory. Information coming into short-term memory can match a condition in one of these rules and result in the

action being executed. For example, a pair of production rules might be

IF dog is wagging tail

THEN pat dog

IF dog is growling

THEN run away

1.6.5 LONG-TERM MEMORY PROCESSES

There are three main activities related to long-term memory:

9

➢ storage or remembering of information

➢ forgetting

➢ information retrieval.

We shall consider each of these in turn.

First, how does information get into long-term memory and how can we improve this process? Information from short-term

memory is stored in long-term memory by rehearsal. The repeated exposure to a stimulus or the rehearsal of a piece of

information transfers it into long-term memory.

This process can be optimized in a number of ways. Ebbinghaus performed numerous experiments on memory, using

himself as a subject . In these experiments he tested his ability to learn and repeat nonsense syllables, comparing his recall

minutes, hours and days after the learning process.

He discovered that the amount learned was directly proportional to the amount of time spent learning. This is known as

the total time hypothesis. However, experiments by Baddeley andothers suggest that learning time is most effective if it is

distributed over time.

For example, in an experiment in which Post Office workers were taught to type ,those whose training period was divided

into weekly sessions of one hour performed better than those who spent two or four hours a week learning (although the

former obviously took more weeks to complete their training). This is known as the distribution of practice effect.

However, repetition is not enough to learn information well. If information is not meaningful it is more difficult to

remember. This is illustrated by the fact that it is more difficult to remember a set of words representing concepts than a set

of words representing objects.

First try to remember the words in list A and test yourself.

List A: Faith Age Cold Tenet Quiet Logic Idea Value Past Large

Now try list B.

List B: Boat Tree Cat Child Rug Plate Church Gun Flame Head

The second list was probably easier to remember than the first since you could visualize the objects in the second list. if

information is meaningful and familiar, it can be related to existing structures and more easily incorporated into memory.

There are two main theories of forgetting

➢ Decay

➢ Interference

1. The first theory suggests that the information held in long-term memory may eventually be forgotten. Ebbinghaus

concluded from his experiments with nonsense syllables that information in memory decayed logarithmically, that is that it

was lost rapidly to begin with, and then more slowly. Jost’s law, which follows from this, states that if two memory traces

are equally strong at a given time the older one will be more durable.

2. The second theory is that information is lost from memory through interference. If we acquire new information it

causes the loss of old information. This is termed retroactive interference.

A common example of this is the fact that if you change telephone numbers, learning your new number makes it more

difficult to remember your old number. This is because the new association masks the old. However, sometimes the old

memory trace breaks through and interferes with new information. This is called proactive inhibition.

First, proactive inhibition demonstrates the recovery of old information even after it has been ‘lost’ by interference.

Secondly, there is the ‘tip of the tongue’ experience, which indicates that some information is present but cannot be

satisfactorily accessed. Thirdly, information may not be recalled but may be recognized, or may be recalled only with

prompting.

This leads us to the third process of memory: information retrieval. Here we need to distinguish between two types of

information retrieval, recall and recognition.

10

 In recall the information is reproduced from memory. In recognition, the presentation of the information provides the

knowledge that the information has been seen before. Recognition is the less complex cognitive activity since the

information is provided as a cue.

However, recall can be assisted by the provision of retrieval cues, which enable the subject quickly to access the information

in memory. One such cue is the use of categories.

In an experiment subjects were asked to recall lists of words, some of which were organized into categories and some of

which were randomly organized. The words that were related to a category were easier to recall than the others. Recall is

even more successful if subjects are allowed to categorize their own lists of words during learning. For example, consider

the following list of words:

child red plane dog friend blood cold tree big angry

Now make up a story that links the words using as vivid imagery as possible. Now try to recall as many of the words as you

can. Did you find this easier than the previous experiment where the words were unrelated?

THINKING: REASONING AND PROBLEM SOLVING

Thinking can require different amounts of knowledge. Some thinking activities are very directed and the knowledge

required is constrained. Others require vast amounts of knowledge from different domains. For example, performing a

subtraction calculation requires a relatively small amount of knowledge, from a constrained domain, whereas understanding

newspaper headlines demands knowledge of politics, social structures, public figures and world events.

 Reasoning

Reasoning is the process by which we use the knowledge we have to draw conclusions or infer something new about the

domain of interest. There are a number of different types of reasoning: deductive, inductive and abductive.

 Deductive reasoning

Deductive reasoning derives the logically necessary conclusion from the given premises.

For example,

If it is Friday then she will go to work

It is Friday

Therefore she will go to work.

It is important to note that this is the logical conclusion from the premises; it does not necessarily have to correspond to our

notion of truth. So, for example,

If it is raining then the ground is dry

It is raining

Therefore the ground is dry.

is a perfectly valid deduction, even though it conflicts with our knowledge of what is true in the world. Deductive reasoning

is therefore often misapplied.

Given the premises

 Some people are babies

 Some babies cry

many people will infer that ‘Some people cry’. This is in fact an invalid deduction since we are not told that all babies are

people. It is therefore logically possible that the babies who cry are those who are not people. It is at this point, where truth

and validity clash, that human deduction is poorest.

11

We assume a certain amount of shared knowledge in our dealings with each other, which in turn allows us to interpret the

inferences and deductions implied by others. If validity rather than truth was preferred, all premises would have to be made

explicit

 Inductive reasoning

Induction is generalizing from cases we have seen to infer information about cases we have not seen.

For example, if every elephant we have ever seen has a trunk, we infer that all elephants have trunks. Of course, this

inference is unreliable and cannot be proved to be true; it can only be proved to be false.

We can disprove the inference simply by producing an elephant without a trunk. However, we can never prove it true

because, no matter how many elephants with trunks we have seen or are known to exist, the next one we see may be

trunkless. The best that we can do is gather evidence to support our inductive inference.

 In spite of its unreliability, induction is a useful process, which we use constantly in learning about our

environment. We can never see all the elephants that have ever lived or will ever live, but we have certain knowledge about

elephants which we are prepared to trust for all practical purposes, which has largely been inferred by induction.

Even if we saw an elephant without a trunk, we would be unlikely to move from our position that ‘All elephants have

trunks’, since we are better at using positive than negative evidence. This is illustrated in an experiment first devised by

Wason

 You are presented with four cards as in Figure 1.14. Each card has a number on one side and a letter on the other. Which

cards would you need to pick up to test the truth of the statement ‘If a card has a vowel on one side it has an even number on

the other’?

A common response to this (was it yours?) is to check the E and the 4. However, this uses only positive evidence. In fact, to

test the truth of the statement we need to check negative evidence: if we can find a card which has an odd number on one

side and a vowel on the other we have disproved the statement. We must therefore check E and 7. (It does not matter what is

on the other side of the other cards: the statement does not say that all even numbers have vowels, just that all vowels have

even numbers.)

Abductive reasoning

Abduction reasons from a fact to the action or state that caused it. This is the method we use to derive explanations for

the events we observe.

For example, suppose we know that Sam always drives too fast when she has been drinking.

If we see Sam driving too fast we may infer that she has been drinking.

 Of course, this too is unreliable since there may be another reason why she is driving fast: she may have been called to an

emergency, for example. In spite of its unreliability, it is clear that people do infer explanations in this way, and hold onto

them until they have evidence to support an alternative theory or explanation.

This can lead to problems in using interactive systems. If an event always follows an action, the user will infer that the event

is caused by the action unless evidence to the contrary is made available.

Problem solving

 If reasoning is a means of inferring new information from what is already known, problem solving is the

process of finding a solution to an unfamiliar task, using the knowledge we have.

12

Human problem solving is characterized by the ability to adapt the information we have to deal with new situations.

However, often solutions seem to be original and creative. There are a number of different views of how people solve

problems. The earliest, dating back to the first half of the twentieth century, is the Gestalt view that problem solving

involves both reuse of knowledge and insight.

This has been largely superseded but the questions it was trying to address remain and its influence can be seen in later

research. A second major theory, proposed in the 1970s by Newell and Simon, was the problem space theory, which takes

the view that the mind is a limited information processor. Later variations on this drew on the earlier theory and attempted to

reinterpret Gestalt theory in terms of information processing theories.

Gestalt theory

 Gestalt psychologists were answering the claim, made by behaviorists, that problem solving is a matter of

reproducing known responses or trial and error. Problem solving is both productive and reproductive. Reproductive

problem solving draws on previous experience as the behaviorists claimed, but productive problem solving involves

insight and restructuring of the problem. Indeed, reproductive problem solving could be a hindrance to finding a solution,

since a person may ‘fixate’ on the known aspects of the problem and so be unable to see novel interpretations that might

lead to a solution

Gestalt psychologists backed up their claims with experimental evidence. Kohler provided evidence of apparent insight

being demonstrated by apes, which he observed joining sticks together in order to reach food outside their cages . However,

this was difficult to verify since the apes had once been wild and so could have been using previous knowledge.

Other experiments observed human problem-solving behavior. One well-known example of this is Maier’s pendulum

problem . The problem was this: the subjects were in a room with two pieces of string hanging from the ceiling. Also in the

room were other objects including pliers, poles and extensions. The task set was to tie the pieces of string together.

However, they were too far apart to catch hold of both at once.

The movement of the string had given insight and allowed the subjects to see the problem in a new way. The experiment

also illustrates fixation: subjects were initially unable to see beyond their view of the role or use of a pair of pliers.

Problem space theory

 Newell and Simon proposed that problem solving centers on the problem space. The problem space comprises

problem states, and problem solving involves generating these states using legal state transition operators. The problem

has an initial state and a goal state and people use the operators to move from the former to the latter. Such problem

spaces may be huge, and so heuristics are employed to select appropriate operators to reach the goal.

One such heuristic is means–ends analysis. In means–ends analysis the initial state is compared with the goal state and

an operator chosen to reduce the difference between the two. For example, imagine you are reorganizing your office and

you want to move your desk from the north wall of the room to the window.

 Your initial state is that the desk is at the north wall. The goal state is that the desk is by the window. The main difference

between these two is the location of your desk. You have a number of operators which you can apply to moving things: you

can carry them or push them or drag them, etc. However, you know that to carry something it must be light and that your

desk is heavy. You therefore have a new subgoal: to make the desk light. Your operators for this may involve removing

drawers, and so on.

An important feature of Newell and Simon’s model is that it operates within the constraints of the human processing system,

and so searching the problem space is limited by the capacity of short-term memory, and the speed at which information can

be retrieved.

Within the problem space framework, experience allows us to solve problems more easily since we can structure the

problem space appropriately and choose operators efficiently.

Newell and Simon’s theory, and their General Problem Solver model which is based on it, have largely been applied to

problem solving in well-defined domains, for example solving puzzles. These problems may be unfamiliar but the

knowledge that is required to solve them is present in the statement of the problem and the expected solution is clear.

13

 In real-world problems finding the knowledge required to solve the problem may be part of the problem, or specifying the

goal may be difficult.

Problems such as these require significant domain knowledge: for example, to solve a programming problem you need

knowledge of the language and the domain in which the program operates. In this instance specifying the goal clearly may

be a significant part of solving the problem.

Analogy in problem solving

 A third element of problem solving is the use of analogy. ANALOGY is done by mapping knowledge relating to a

similar known domain to the new problem – called analogical mapping.

 Similarities between the known domain and the new one are noted and operators from the known domain are transferred to

the new one.This process has been investigated using analogous stories. Gick and Holyoak gave subjects the following

problem:

A doctor is treating a malignant tumor. In order to destroy it he needs to blast it with high-intensity rays. However, these

will also destroy the healthy tissue surrounding the tumor. If he lessens the rays’ intensity the tumor will remain. How does

he destroy the tumor?

The solution to this problem is to fire low-intensity rays from different directions converging on the tumor.

That way, the healthy tissue receives harmless low intensity rays while the tumor receives the rays combined, making a

high-intensity dose. The investigators found that only 10% of subjects reached this solution without help. However, this rose

to 80% when they were given this analogous story and told that it may help them:

A general is attacking a fortress. He can’t send all his men in together as the roads are mined to explode if large numbers of

men cross them. He therefore splits his men into small groups and sends them in on separate roads.

 Skill acquisition

All of the problem solving that we have considered so far has concentrated on handling unfamiliar problems. However,

for much of the time, the problems that we face are not completely new. Instead, we gradually acquire skill in a particular

domain area. But how is such skill acquired and what difference does it make to our problem-solving performance? We can

gain insight into how skilled behavior works, and how skills are acquired, by considering the difference between novice and

expert behavior in given domains

A commonly studied domain is chess playing. It is particularly suitable since it lends itself easily to representation in terms

of problem space theory. The initial state is the opening board position; the goal state is one player checkmating the other;

operators to move states are legal moves of chess. It is therefore possible to examine skilled behavior within the context of

the problem space theory of problem solving.

ACT* identifies three basic levels of skill:

1. The learner uses general-purpose rules which interpret facts about a problem.

This is slow and demanding on memory access.

2. The learner develops rules specific to the task.

3. The rules are tuned to speed up performance.

General mechanisms are provided to account for the transitions between these levels. For example, proceduralization is a

mechanism to move from the first to the second. It removes the parts of the rule which demand memory access and

replaces variables with specific values.

Generalization, on the other hand, is a mechanism which moves from the second level to the third. It generalizes from

the specific cases to general properties of those cases. Commonalities between rules are condensed to produce a general-

purpose rule.

14

These are best illustrated by example. Imagine you are learning to cook. Initially you may have a general rule to tell you

how long a dish needs to be in the oven, and a number of explicit representations of dishes in memory. You can instantiate

the rule by retrieving information from memory.

IF cook[type, ingredients, time]

THEN

cook for: time

cook[casserole, [chicken,carrots,potatoes], 2 hours]

cook[casserole, [beef,dumplings,carrots], 2 hours]

cook[cake, [flour,sugar,butter,eggs], 45 mins]

Gradually your knowledge becomes proceduralized and you have specific rules for

each case:

IF type is casserole

AND ingredients are [chicken,carrots,potatoes]

THEN

cook for: 2 hours

IF type is casserole

AND ingredients are [beef,dumplings,carrots]

THEN

cook for: 2 hours

IF type is cake

AND ingredients are [flour,sugar,butter,eggs]

THEN

cook for: 45 mins

Finally, you may generalize from these rules to produce general-purpose rules, which exploit their commonalities:

IF type is casserole

AND ingredients are ANYTHING

THEN

cook for: 2 hours

The first stage uses knowledge extensively. The second stage relies upon known procedures. The third stage

represents skilled behavior. Such behavior may in fact become automatic and as such be difficult to make explicit.

Errors and mental models

Human capability for interpreting and manipulating information is quite impressive. However, we do make mistakes. Some

are trivial, resulting in no more than temporary inconvenience or annoyance. Others may be more serious, requiring

substantial effort to correct. Occasionally an error may have catastrophic effects, as

we see when ‘human error’ results in a plane crash or nuclear plant leak.

Why do we make mistakes and can we avoid them?

There are several different types of error.

If a pattern of behavior has become automatic and we change some aspect of it, the more familiar pattern may break through

and cause an error. A familiar example of this is where we intend to stop at the shop on the way home from work but in fact

drive past. Here, the activity of driving home is the more familiar and overrides the less familiar intention. Other errors

result from an incorrect understanding, or model, of a situation or system. People build their own theories to understand the

causal behavior of systems.

These have been termed mental models. They have a number of characteristics.

15

Mental models are often partial: the person does not have a full understanding of the working of the whole system. They are

unstable and are subject to change. They can be internally inconsistent, since the person may not have worked through the

logical consequences of their beliefs. They are often unscientific and may be based on superstition rather than evidence.

Often they are based on an incorrect interpretation of the evidence.

EMOTION

Our emotional response to situations affects how we perform. For example, positive emotions enable us to think more

creatively, to solve complex problems, whereas negative emotion pushes us into narrow, focussed thinking. A problem

that may be easy to solve when we are relaxed, will become difficult if we are frustrated or afraid.

Psychologists have studied emotional response for decades and there are many theories as to what is happening when we

feel an emotion and why such a response occurs.

More than a century ago, William James proposed what has become known as the James–Lange theory (Lange was a

contemporary of James whose theories were similar): that emotion was the interpretation of a physiological response, rather

than the other way around. So while we may feel that we respond to an emotion, James contended that we respond

physiologically to a stimulus and interpret that as emotion:

Common sense says, we lose our fortune, are sorry and weep; we meet a bear, are frightened and run; we are

insulted by a rival, are angry and strike. The hypothesis here . . . is that we feel sorry because we cry, angry because

we strike, afraid because we tremble.

Schachter and Singer proposed a third interpretation: that emotion results from a person evaluating physical responses

in the light of the whole situation. So whereas the same physiological response can result from a range of different

situations, the emotion that is felt is based on a cognitive evaluation of the circumstance and will depend on what the person

attributes this to. So the same physiological response of a pounding heart will be interpreted as excitement if we are in a

competition and fear if we find ourselves under attack.

Whatever the exact process, what is clear is that emotion involves both physical and cognitive events. Our body responds

biologically to an external stimulus and we interpret that in some way as a particular emotion.

That biological response – known as affect – changes the way we deal with different situations, and this has an impact on

the way we interact with computer systems.

 As Donald Norman says:

Negative affect can make it harder to do even easy tasks; positive affect can make it easier to do difficult tasks.

A typical computer system

Consider a typical computer setup as shown in Figure 2.1

 There is the computer ‘box’ itself, a keyboard, a mouse and a color screen. The screen layout is shown alongside it.

Some of this variation is driven by different hardware configurations: desktop use, laptop computers, PDAs (personal digital

assistants).

Levels of interaction – batch processing

16

 In the early days of computing, information was entered into the computer in a large mass – batch data entry. There was

minimal interaction with the machine: the user would simply dump a pile of punched cards onto a reader, press the start

button, and then return a few hours later.

With batch processing the interactions take place over hours or days. In contrast the typical desktop computer system has

interactions taking seconds or fractions of a second (or with slow web pages sometimes minutes!).

Richer interaction – everywhere

 Information appliances are putting internet access or dedicated systems onto the fridge, microwave and washing

machine: to automate shopping, give you email in your kitchen or simply call for maintenance when needed. We carry with

us WAP phones and smartcards, have security systems that monitor us and web cams that show our homes to the world. Is

Figure 2.1 really the typical computer system or is it really more like Figure 2.2

TEXT ENTRY DEVICES

 The most obvious means of text entry is the plain keyboard, but there are several variations on this: different keyboard

layouts, ‘chord’ keyboards that use combinations of fingers to enter letters, and phone key pads.

The alphanumeric keyboard

 The keyboard is still one of the most common input devices in use today. It is used for entering textual data and

commands. The vast majority of keyboards have a standardized layout, and are known by the first six letters of the top row

of alphabetical keys, QWERTY. There are alternative designs which have some advantages over the QWERTY layout, but

these have not been able to overcome the vast technological inertia of the QWERTY keyboard. These alternatives are of two

forms: 26 key layouts and chord keyboards. A 26 key layout rearranges the order of the alphabetic keys, putting the most

commonly used letters under the strongest fingers, or adopting simpler practices. In addition to QWERTY, we will discuss

two 26 key layouts, alphabetic and DVORAK, and chord keyboards

Ease of learning – alphabetic keyboard

 One of the most obvious layouts to be produced is the alphabetic keyboard, in which the letters are arranged

alphabetically across the keyboard. It might be expected that such a layout would make it quicker for untrained typists to

use, but this is not the case. Studies have shown that this keyboard is not faster for properly trained typists, as we may

expect, since there is no inherent advantage to this layout. And even for novice or occasional users, the alphabetic layout

appears to make very little difference to the speed of typing

The QWERTY keyboard

 The layout of the digits and letters on a QWERTY keyboard is fixed (see Figure 2.3), but non-alphanumeric keys vary

between keyboards. For example, there is a difference between key assignments on British and American keyboards (in

particular, above the 3 on the UK keyboard is the pound sign £, whilst on the US keyboard there is a dollar sign $). The

standard layout is also subject to variation in the placement of brackets, backslashes and suchlike. In addition different

national keyboards include accented letters and the traditional French layout places the main letters in different locations –

the top line starts AZERTY. The QWERTY arrangement of keys is not optimal for typing, however. The reason for the

layout of the keyboard in this fashion can be traced back to the days of mechanical typewriters. the QWERTY keyboard

17

remains the dominant layout. There is also a large investment in current keyboards, which would all have to be either

replaced at great cost, or phased out, with the subsequent requirement for people to be proficient on both keyboards.

Ergonomics of use – DVORAK keyboard and split designs

 The DVORAK keyboard uses a similar layout of keys to the QWERTY system, but assigns the letters to different

keys. Based upon an analysis of typing, the keyboard is designed to help people reach faster typing speeds. It is biased

towards right-handed people, in that 56% of keystrokes are made with the right hand. The layout of the keys also attempts to

ensure that the majority of keystrokes alternate between hands, thereby increasing the potential speed. By keeping the most

commonly used keys on the home, or middle, row, 70% of keystrokes are made without the typist having to stretch far,

thereby reducing fatigue and increasing keying speed. The layout also aims to minimize the number of keystrokes made

with the weak fingers. Many of these requirements are in conflict, and the DVORAK keyboard represents one possible

solution. Experiments have shown that there is a speed improvement of between 10 and 15%, coupled with a reduction in

user fatigue due to the increased ergonomic layout of the keyboard

Alphabetic keyboard

 One of the most obvious layouts to be produced is the alphabetic keyboard, in which the letters are arranged

alphabetically across the keyboard. It might be expected that such a layout would make it quicker for untrained typists to

use, but this is not the case. Studies have shown that this keyboard is not faster for properly trained typists, as we may

expect, since there is no inherent advantage to this layout. And even for novice or occasional users, the alphabetic layout

appears to make very little difference to the speed of typing. These keyboards are used in some pocket electronic personal

organizers, perhaps because the layout looks simpler to use than the QWERTY one. Also, it dissuades people from

attempting to use their touch-typing skills on a very small keyboard and hence avoids criticisms of difficulty of use.

Dvorak Keyboard

 Attempts at designing alternative keyboards that are more efficient and quicker to use have produced, among

others, the Dvorak and Alphabetic boards. The Dvorak board, first patented in 1932, was designed using the following

principles: Layout is arranged on the basis of frequency of usage of letters and the frequency of letter pattern and sequences

in the English language. All vowels and the most frequently used consonants are on the second or home row, so that

something like 70% of common words are typed on this row alone. Faster operation is made possible by tapping with

fingers on alternate hands (particularly the index fingers) rather than by repetitive tapping with one finger and having the

majority of keying assigned to one hand, as in the QWERTY keyboard, which favors left-handers. Since the probability of

vowels and consonants altering is very high, all vowels are typed with the left hand and frequent home row consonants with

the right.

Chord keyboards

 Chord keyboards are significantly different from normal alphanumeric keyboards. Only a few keys, four or five, are

used (see Figure 2.4) and letters are produced by pressing one or more of the keys at once. For example, in the Microwriter,

the pattern of multiple keypresses is chosen to reflect the actual letter shape.

Such keyboards have a number of advantages. They are extremely compact: simply reducing the size of a conventional

keyboard makes the keys too small and close together, with a correspondingly large increase in the difficulty of using it. The

learning time for the keyboard is supposed to be fairly short – of the order of a few

hours – but social resistance is still high. Moreover, they are capable of fast typing speeds in the hands (or rather hand!) of a

competent user. Chord keyboards can also be used where only one-handed operation is possible, in cramped and confined

18

conditions. In particular, courtroom stenographers use a special form of two-handed chord keyboard and associated

shorthand to enter text at full spoken speed.

Phone pad and T9 entry

With mobile phones being used for SMS text messaging and WAP the phone keypad has become an important form of text

input. Unfortunately a phone only has digits 0–9, not a full alphanumeric keyboard. To overcome this for text input the

numeric keys are usually pressed several times – Figure 2.5 shows a typical mapping of digits to letters. For example, the 3

key has ‘def ’ on it. If you press the key once you get a ‘d’, if you press 3 twice you get an ‘e’, if you press it three times you

get an ‘f ’.

The main number-to-letter mapping is standard, but punctuation and accented letters differ between phones. Also there

needs to be a way for the phone to distinguish, say, the ‘dd’ from ‘e’. On some phones you need to pause for a short period

between successive letters using the same key, for others you press an additional key (e.g. ‘#’).

Most phones have at least two modes for the numeric buttons: one where the keys mean the digits (for example when

entering a phone number) and one where they mean letters (for example when typing an SMS message). Some have

additional modes to make entering accented characters easier. Also a special mode or setting is needed for capital letters

although many phones use rules to reduce this, for example automatically capitalizing the initial letter in a message and

letters following full stops, question marks and exclamation marks.

Handwriting recognition

 Handwriting is a common and familiar activity, and is therefore attractive as a method of text entry. If we were able to

write as we would when we use paper, but with the computer taking this form of input and converting it to text, we can see

that it is an intuitive and simple way of interacting with the computer. However, there are a number of disadvantages with

handwriting recognition. Current technology is still fairly inaccurate and so makes a significant number of mistakes in

recognizing letters, though it has improved rapidly. Moreover, individual differences in handwriting are enormous, and

make the recognition process even more difficult. The most significant information in handwriting is not in the letter shape

itself but in the stroke information – the way in which the letter is drawn. This means that devices which support

handwriting recognition must capture the stroke information, not just the final character shape. Because of this, online

recognition is far easier than reading handwritten text on paper.

Speech recognition

 Speech recognition is a promising area of text entry, but it has been promising for a number of years and is still only

used in very limited situations. There is a natural enthusiasm for being able to talk to the machine and have it respond to

commands, since this form of interaction is one with which we are very familiar. Successful recognition rates of over 97%

19

have been reported, but since this represents one letter in error in approximately every 30, or one spelling mistake every six

or so words, this is stoll unacceptible (sic)!

Moreover, since every person speaks differently, the system has to be trained and tuned to each new speaker, or its

performance decreases. Strong accents, a cold or emotion can also cause recognition problems, as can background noise.

This leads us on to the question of practicality within an office environment: not only may the background level of noise

cause errors, but if everyone in an open-plan office were to talk to their machine, the level of noise would dramatically

increase, with associated difficulties. Confidentiality would also be harder to maintain.

Despite its problems, speech technology has found niche markets: telephone information systems, access for the disabled, in

hands-occupied situations (especially military) and for those suffering RSI.

POSITIONING, POINTING AND DRAWING

THE MOUSE

The mouse has become a major component of the majority of desktop computer systems sold today, and is the little box

with the tail connecting it to the machine in our basic computer system picture (Figure2.6).

➢ It is a small, palm-sized box housing a weighted ball – as the box is moved over the table top, the ball is rolled by the

table and so rotates inside the housing. This rotation is detected by small rollers that are in contact with the ball, and these

adjust the values of potentiometers.

➢ The changing values of these potentiometers can be directly related to changes in position of the ball. The potentiometers

are aligned in different directions so that they can detect both horizontal and vertical motion.

➢ The relative motion information is passed to the computer via a wire attached to the box, or in some cases using wireless

or infrared, and moves a pointer on the screen, called the cursor.

The whole arrangement tends to look rodent-like, with the box acting as the body and the wire as the tail; hence the term

‘mouse’ The mouse operates in a planar fashion, moving around the desktop, and is an indirect input device, since a

transformation is required to map from the horizontal nature of the desktop to the vertical alignment of the screen. Left–right

motion is directly mapped, whilst up–down on the screen is achieved by moving the mouse away–towards the user

The mouse was developed around 1964 by Douglas C. Engelbart, and a photograph of the first prototype is shown in

Figure2.6 This used two wheels that slid across the desktop and transmitted x–y coordinates to the computer. The housing

was carved in wood, and has been damaged, exposing one of the wheels.

The original design actually offers a few advantages over today’s more sleek versions: by tilting it so that only one wheel is

in contact with the desk, pure vertical or horizontal motion can be obtained.

OPTICAL MICE

 Optical mice work differently from mechanical mice. A light-emitting diode emits a weak red light from the base of

the mouse. This is reflected off a special pad with a metallic grid-like pattern upon which the mouse has to sit, and the

fluctuations in reflected intensity as the mouse is moved over the gridlines are recorded by a sensor in the base of the mouse

and translated into relative x, y motion.

There have been experiments with a device called the foot mouse. As the name implies, it is a foot-operated device,

although more akin to an isometric joystick than a mouse. The cursor is moved by foot pressure on one side or the other of a

pad. This allows one to dedicate hands to the keyboard.

20

Interestingly foot pedals are used heavily in musical instruments including pianos, electric guitars, organs and drums and

also in mechanical equipment including cars, cranes, sewing machines and industrial controls

TOUCHPAD

 Touch pads are touch-sensitive tablets usually around 2–3 inches (50–75 mm) square. They were first used

extensively in Apple Powerbook portable computers but are now used in many other notebook computers and can be

obtained separately to replace the mouse on the desktop. They are operated by stroking a finger over their surface, rather

like using a simulated trackball.

Because they are small it may require several strokes to move the cursor across the screen. This can be improved by using

acceleration settings in the software linking the trackpad movement to the screen movement. Rather than having a fixed

ratio of pad distance to screen distance, this varies with the speed of movement

TRACKBALL AND THUMBWHEEL

 The trackball is really just an upside-down mouse! A weighted ball faces upwards and is rotated inside a static

housing, the motion being detected in the same way as for a mechanical mouse, and the relative motion of the ball moves

the cursor. Because of this, the trackball requires no additional space in which to operate, and is therefore a very compact

device. It is an indirect device, and requires separate buttons for selection.

Thumbwheels are different in that they have two orthogonal dials to control the cursor position. Such a device is very cheap,

but slow, and it is difficult to manipulate the cursor in any way other than horizontally or vertically. This limitation can

sometimes be a useful constraint in the right application. For instance, in CAD the designer is almost always concerned with

exact verticals and horizontals, and a device that provides such constraints is very useful, which accounts for the appearance

of thumbwheels in CAD systems.

Another successful application for such a device has been in a drawing game such as Etch-a-Sketch in which straight lines

can be created on a simple screen, since the predominance of straight lines in simple drawings means that the motion

restrictions are an advantage rather than a handicap.

JOYSTICK AND KEYBOARD NIPPLE

The joystick is an indirect input device, taking up very little space. Consisting of a small palm-sized box with a stick or

shaped grip sticking up from it, the joystick is a simple device with which movements of the stick cause a corresponding

movement of the screen cursor. There are two types of joystick: the absolute and the isometric.

In the absolute joystick, movement is the important characteristic, since the position of the joystick in the base corresponds

to the position of the cursor on the screen.

In the isometric joystick, the pressure on the stick corresponds to the velocity of the cursor, and when released, the stick

returns to its usual upright centered position.

This type of joystick is also called the velocity-controlled joystick, for obvious reasons. The buttons are usually placed on

the top of the stick, or on the front like a trigger. Joysticks are inexpensive and fairly robust, and for this reason they are

often found in computer games.

A smaller device but with the same basic characteristics is used on many laptop computers to control the cursor. Some older

systems had a variant of this called the keymouse, which was a single key

TOUCH-SENSITIVE SCREENS (TOUCHSCREENS)

Touch screens are another method of allowing the user to point and select objects on the screen, but they are much more

direct than the mouse, as they detect the presence of the user’s finger, or a stylus, on the screen itself. They work in one of a

number of different ways: by the finger (or stylus) interrupting a matrix of light beams, or by capacitance changes on a grid

overlaying the screen, or by ultrasonic reflections. Because the user indicates exactly which item is required by pointing to

it, no mapping is required and therefore this is a direct device.

The touch screen is very fast, and requires no specialized pointing device. It is especially good for selecting items from

menus displayed on the screen. Because the screen acts as an input device as well as an output device, there is no separate

21

hardware to become damaged or destroyed by dirt; this makes touch screens suitable for use in hostile environments. They

are also relatively intuitive to use and have been used successfully as an interface to information systems for the general

public.

They suffer from a number of disadvantages, however. Using the finger to point is not always suitable, as it can leave greasy

marks on the screen, and, being a fairly blunt instrument, it is quite inaccurate.

Stylus and light pen

An older technology that is used in the same way is the light pen. The pen is connected to the screen by a cable and, in

operation, is held to the screen and detects a burst of light from the screen phosphor during the display scan.

The light pen can therefore address individual pixels and so is much more accurate than the touch screen Both stylus and

light pen can be used for fine selection and drawing, but both can be tiring to use on upright displays and are harder to take

up and put down when used together with a keyboard.

Stylus, light pen and touch screen are all very direct in that the relationship between the device and the thing selected is

immediate. In contrast, mouse, touchpad, joystick and trackball all have to map movements on the desk to cursor movement

on the screen.

 However, the direct devices suffer from the problem that, in use, the act of pointing actually obscures the display,

making it harder to use, especially if complex detailed selections or movements are required in rapid succession. This means

that screen designs have to take into account where the user’s hand will be.

For example, you may want to place menus at the bottom of the screen rather than the top. Also you may want to offer

alternative layouts for right-handed and left-handed users.

DIGITIZING TABLET

The digitizing tablet is a more specialized device typically used for freehand drawing, but may also be used as a mouse

substitute. Some highly accurate tablets, usually using a puck (a mouse-like device), are used in special applications such as

digitizing information for maps.

The tablet provides positional information by measuring the position of some device on a special pad, or tablet, and can

work in a number of ways. The resistive tablet detects point contact between two separated conducting sheets.

It has advantages in that it can be operated without a specialized stylus – a pen or the user’s finger is sufficient. The

magnetic tablet detects current pulses in a magnetic field using a small loop coil housed in a special pen.

There are also capacitative and electrostatic tablets that work in a similar way. The sonic tablet is similar to the above but

requires no special surface. An ultrasonic pulse is emitted by a special pen which is detected by two or more microphones

which then triangulate the pen position. This device can be adapted to provide 3D input, if required.

Digitizing tablets are capable of high resolution, and are available in a range of sizes. Sampling rates vary, affecting the

resolution of cursor movement, which gets progressively finer as the sampling rate increases. The digitizing tablet can be

used to detect relative motion or absolute motion, but is an indirect device since there is a mapping from the plane of

operation of the tablet to the screen. It can also be used for text input; if supported by character recognition software,

handwriting can be interpreted.

Problems with digitizing tablets are that they require a large amount of desk space, and may be awkward to use if displaced

to one side by the keyboard.

EYEGAZE

Some systems require you to wear special glasses or a small head-mounted box, others are built into the screen or sit as a

small box below the screen. A low-power laser is shone into the eye and is reflected off the retina. The reflection changes as

the angle of the eye alters, and by tracking the reflected beam the eyegaze system can determine the direction in which the

eye is looking. The system needs to be calibrated, typically by staring at a series of dots on the screen, but thereafter can be

used to move the screen cursor or for other more specialized uses.

22

 Eyegaze is a very fast and accurate device, but the more accurate versions can be expensive. It is fine for selection but not

for drawing since the eye does not move in smooth lines. Also in real applications it can be difficult to distinguish

deliberately gazing at something and accidentally glancing at it.

CURSOR KEYS AND DISCRETE POSITIONING

All of the devices we have discussed are capable of giving near continuous 2D positioning, with varying degrees of

accuracy. For many applications we are only interested in positioning within a sequential list such as a menu or amongst 2D

cells as in a spreadsheet. Even for moving within text discrete up/down left/right keys can sometimes be preferable to using

a mouse.

Cursor keys are available on most keyboards. Four keys on the keyboard are used to control the cursor, one each for up,

down, left and right. There is no standardized layout for the keys. Some layouts are shown in Figure2.7, but the most

common now is the inverted ‘T’.

Cursor keys used to be more heavily used in character-based systems before windows and mice were the norm. However,

when logging into remote machines such as web servers, the interface is often a virtual character-based terminal within a

telnet window.

Small devices such as mobile phones, personal entertainment and television remote controls often require discrete control,

either dedicated to a particular function such as volume, or for use as general menu selection. Figure2.7 shows examples of

these.

The satellite TV remote control has dedicated ‘+/–’ buttons for controlling volume and stepping between channels. It also

has a central cursor pad that is used for on-screen menus. The mobile phone has a single central joystick-like device. This

can be pushed left/right, up/down to navigate within the small 3 × 3 array of graphical icons as well as select from text

menus.

DISPLAY DEVICES

CATHODE RAY TUBE

 The cathode ray tube is the television-like computer screen still most common as we write this, but rapidly being

displaced by flat LCD screens. It works in a similar way to a standard television screen.

 A stream of electrons is emitted from an electron gun, which is then focused and directed by deflection magnetic

fields. As the beam hits the phosphor-coated screen, the phosphor is phosphor- excited by the electrons and glows.

23

 The coated screen electron beam is scanned from left to right, and then flicked back to rescan the next line, from

top to bottom. Black and white screens are able to display grayscale by varying the intensity of the electron beam; color is

achieved using more complex means.

 Three electron guns are used, one each to hit red, green and blue phosphors. Combining these colors can produce

many others, including white, when they are all fully on.

 These three phosphor dots are focused to make a single point using a shadow mask, which is imprecise and gives

color screens a lower resolution than equivalent monochrome screens.

 The CRT is a cheap display device and has fast enough response times for rapid animation coupled with a high

color capability. Note that animation does not necessarily means little creatures and figures running about on the screen, but

refers in a more general sense to the use of motion in displays: moving the cursor, opening windows, indicating processor-

intensive calculations, or whatever.

As screen resolution increased, however, the price rises. Because of the electron gun and focusing components behind the

screen, CRTs are fairly bulky, though recent innovations have led to flatter displays in which the electron gun is not placed

so that it fires directly at the screen, but fires parallel to the screen plane with the resulting beam bent through 90 degrees to

his the screen.

HEALTH HAZARDS OF CRT DISPLAYS

Most people who habitually use computers are aware that screens can often cause eyestrain and fatigue; this is usually due

to flicker, poor legibility or low contrast. There have also been many concerns relating to the emission of radiation from

screens. These can be categorized as follows:

• X-rays which are largely absorbed by the screen (but not at the rear!)

• ultraviolet and infrared radiation from phosphors in insignificant levels

• radio frequency emissions, plus ultrasound (approximately 16 kHz)

• electrostatic field which leaks out through the tube to the user. The intensity is dependent on distance and humidity.

This can cause rashes in the user electromagnetic fields (50 Hz to 0.5 MHz) which create induction currents in

conductive materials, including the human body.

Two types of effects are attributed to this: in the visual system, a high incidence of cataracts in visual display unit (VDU)

operators, and concern over reproductive disorders (miscarriages and birth defects).

Generally, there are a number of common-sense things that can be done to relieve strain and minimize any risk. These

include

• not sitting too close to the screen

• not using very small fonts

• not looking at the screen for a long time without a break

• working in well-lit surroundings

• not placing the screen directly in front of a bright window.

Liquid Crystal Display

 Liquid Crystal Displays are mostly used in personal organizer or laptop computers. It is a light, flat plastic screen. These

displays utilize liquid crystal technology and are smaller, lighter and consume far less power than traditional CRTs. These

are also commonly referred to as flat-panel displays. They have no radiation problems associated with them, and are matrix

addressable, which means that individual pixels can be accessed without the need for scanning. This different technology

can be used to replace the standard screen on a desktop computer, and this is now common. However, the particular

characteristics of compactness, lightweight, and low power consumption have meant that these screens have created a large

niche in the computer market by monopolizing the notebook and portable computer systems side.

Special displays

 There are a number of other display technologies used in niche markets. The one you are most likely to see is the

gas plasma display, which is used in large screens The random scan display, also known as the directed beam refresh, or

24

vector display, works differently from the bitmap display, also known as raster scan, Instead of scanning the whole screen

sequentially and horizontally, the random scan draws the lines to be displayed directly. By updating the screen at at least 30

Hz to reduce flicker, the direct drawing of lines at any angle means that jaggies are not created, and higher resolutions are

possible, up to 4096 ×

4096 pixels. Color on such displays is achieved using beam penetration technology, and is generally of a poorer quality.

Eyestrain and fatigue are still a problem, and these displays are more expensive than raster scan ones, so they are now only

used in niche applications.

The direct view storage tube is used extensively as the display for an analog storage oscilloscope, which is probably the only

place that these displays are used in any great numbers. They are similar in operation to the random scan CRT but the image

is maintained by flood guns which have the advantage of producing a stable display with no flicker. The screen image can

be incrementally updated but not selectively erased; removing items has to be done by redrawing the new image on a

completely erased screen. The screens have a high resolution, typically about 4096 × 3120 pixels, but suffer from low

contrast, low brightness and a difficulty in displaying color.

Large displays and situated displays

Displays are no longer just things you have on your desktop or laptop. In shops and garages large screen adverts assault us

from all sides.

There are several types of large screen display. Some use gas plasma technology to create large flat bitmap displays.

These behave just like a normal screen except they are big and usually have the HDTV (high definition television) wide

screen format which has an aspect ratio of 16:9 instead of the 4:3 on traditional TV and monitors.

Where very large screen areas are required, several smaller screens, either LCD or CRT, can be placed together in a video

wall. These can display separate images, or a single TV or computer image can be split up by software or hardware so that

each screen displays a portion of the whole and the result is an enormous image. This is the technique often used in large

concerts to display the artists or video images during the performance.

 The disadvantage of projected displays is that the presenter’s shadow can often fall across the screen.

Sometimes this is avoided in fixed lecture halls by using back projection. In a small room behind the screen of the lecture

theatre there is a projector producing a right/left reversed image. The screen itself is a semi-frosted glass so that the image

projected on the back can be seen in the lecture theatre. Because there are limits on how wide an angle the projector can

manage without distortion, the size of the image is limited by the depth of the projection room behind, so these are less

heavily used than front projection.

As well as for lectures and meetings, display screens can be used in various public places to offer information, link spaces or

act as message areas. These are often called situated displays as they take their meaning from the location in which they are

situated. These may be large screens where several people are expected to view or interact simultaneously, or they may be

very small

Digital paper

A new form of ‘display’ that is still in its infancy is the various forms of digital paper. These are thin flexible materials that

can be written to electronically, just like a computer screen, but which keep their contents even when removed from any

electrical supply.

Electronics embedded into the material allow each tiny sphere to be rotated to make it black or white. When the electronic

signal is removed the ball stays in its last orientation. A different technique has tiny tubes laid side by side. In each tube is

light-absorbing liquid and a small reflective sphere. The sphere can be made to move to the top surface or away from it

making the pixel white or black. Again the sphere stays in its last position once the electronic signal is removed.

DEVICES FOR VIRTUAL REALITY AND 3D INTERACTION

Virtual reality (VR) systems and various forms of 3D visualize require you to navigate and interact in a three-dimensional

space. Sometimes these use the ordinary controls and displays of a desktop computer system, but there are also special

devices used both to move and interact with 3D objects and to enable you to see a 3D environment.

25

Positioning in 3D space

Virtual reality systems present a 3D virtual world. Users need to navigate through these spaces and manipulate the virtual

objects they find there. Navigation is not simply a matter of moving to a particular location, but also of choosing a particular

orientation. In addition, when you grab an object in real space, you don’t simply move it around, but also twist and turn it,

for example when opening a door. Thus the move from mice to 3D devices usually involves a change from two degrees of

freedom to six degrees of freedom, not just three.

Cockpit and virtual controls

Helicopter and aircraft pilots already have to navigate in real space. Many arcade games and also more serious applications

use controls modeled on an aircraft cockpit to ‘fly’ through virtual space. However, helicopter pilots are very skilled and it

takes a lot of practice for users to be able to work easily in such environments. In many PC games and desktop virtual

reality (where the output is shown on an ordinary computer screen), the controls are themselves virtual. This may be a

simulated form of the cockpit controls or more prosaic up/down left/right buttons. The user manipulates these virtual

controls using an ordinary mouse (or other 2D device).

The 3D mouse

There are a variety of devices that act as 3D versions of a mouse. Rather than just moving the mouse on a tabletop, you can

pick it up, move it in three dimensions, rotate the mouse and tip it forward and backward. The 3D mouse has a full six

degrees of freedom as its position can be tracked (three degrees), and also its up/down angle (called pitch), its left/right

orientation (called yaw) and the amount it is twisted about its own axis (called roll)

Various sensors are used to track the mouse position and orientation: magnetic coils, ultrasound or even

mechanical joints where the mouse is mounted rather like an angle-poise lamp. With the 3D mouse, and indeed most 3D

positioning devices, users may experience strain from having to hold the mouse in the air for a long period. 3D mouse

down may even be treated as an action in the virtual environment, that is taking a nose dive.

Dataglove

One of the mainstays of high-end VR systems, the dataglove is a 3D input device. Consisting of a lycra glove with optical

fibers laid along the fingers, it detects the joint angles of the fingers and thumb. As the fingers are bent, the fiber optic

cable bends too; increasing bend causes more light to leak from the fiber, and the reduction in intensity is detected by the

glove and related to the degree of bend in the joint. Attached to the top of the glove are two sensors that use ultrasound to

determine 3D positional information as well as the angle of roll, that is the degree of wrist rotation. Such rich multi-

dimensional input is currently a solution in search of a problem, in that most of the applications in use do not require such a

comprehensive form of data input, whilst those that do cannot afford it. However, the availability of cheaper versions of the

data glove will encourage the development of more complex systems that are able to utilize the full power of the data glove

as an input device.

The data glove has the advantage that it is very easy to use, and is potentially very powerful and expressive (it can provide

10 joint angles, plus the 3D spatial information and degree of wrist rotation, 50 times a second). It suffers from extreme

expense, and the fact that it is difficult to use in conjunction with a keyboard. The potential for the data glove is vast; gesture

recognition and sign language interpretation are two obvious areas that are the focus of active research, whilst less obvious

applications are evolving all the time.

Virtual reality helmets

The helmets or goggles worn in some VR systems have two purposes:

(i) they display the 3D world to each eye and

(ii) they allow the user’s head position to be tracked.

We will discuss the former later when we consider output devices. The head tracking is used primarily to feed into the

output side. As the user’s head moves around the user ought to see different parts of the scene. However, some systems also

use the user’s head direction to determine the direction of movement within the space and even which objects to manipulate

(rather like the eyegaze systems)..

26

Whole-body tracking

 The movement of the whole body may be tracked using devices similar to the data glove, or using image-processing

techniques. In the latter, white spots are stuck at various points of the user’s body and the position of these tracked using two

or more cameras, allowing the location of every joint to be mapped

3D displays

Just as the 3D images used in VR have led to new forms of input device, they also require more sophisticated outputs.

Desktop VR is delivered using a standard computer screen and a 3D impression is produced by using effects such as

shadows, occlusion (where one object covers another) and perspective. This can be very effective and you can even view 3D

images over the world wide web using a VRML (virtual reality markup language) enabled browser.

Simulators and VR caves

Because of the problems of delivering a full 3D environment via head-mounted displays, some virtual reality systems work

by putting the user within an environment where the virtual world is displayed upon it. The most obvious examples of this

are large flight simulators – you go inside a mock-up of an aircraft cockpit and the scenes you would see through the

windows are projected onto the virtual windows.

PHYSICAL CONTROLS, SENSORS AND SPECIAL DEVICES

Special displays

Apart from the CRT screen there are a number of visual outputs utilized in complex systems, especially in embedded

systems. These can take the form of analog representations of numerical values, such as dials, gauges or lights to signify a

certain system state. Flashing light-emitting diodes (LEDs) are used on the back of some computers to signify the processor

state, whilst gauges and dials are found in process control systems. Once you start in this mode of thinking, you can

contemplate numerous visual outputs that are unrelated to the screen. One visual display that has found a specialized niche

is the head-up display that is used in aircraft. The pilot is fully occupied looking forward and finds it difficult to look

around the cockpit to get information.

Sound output

Another mode of output that we should consider is that of auditory signals. Often designed to be used in conjunction with

screen displays, auditory outputs are poorly understood: we do not yet know how to utilize sound in a sensible way to

achieve maximum effect and information transference.

Keyboards can be set to emit a click each time a key is pressed, and this appears to speed up interactive performance.

Telephone keypads often sound different tones when the keys are pressed; a noise occurring signifies that the key has been

successfully pressed, whilst the actual tone provides some information about the particular key that was pressed

Touch, feel and smell

Our other senses are used less in normal computer applications, but you may have played computer games where the

joystick or artificial steering wheel vibrated, perhaps when a car was about to go off the track. In some VR applications,

such as the use in medical domains to ‘practice’ surgical procedures, the feel of an instrument moving through different

tissue types is very important. The devices used to emulate these procedures have force feedback, giving different amounts

of resistance depending on the state of the virtual operation. These various forms of force, resistance and texture that

influence our physical senses are called haptic devices. Haptic devices are not limited to virtual environments, but are used

in specialist interfaces in the real world too. Electronic braille displays either have pins that rise or fall to give different

patterns, or may involve small vibration pins. Force feedback has been used in the design of in-car controls.

PHYSICAL CONTROLS

A desktop computer has to serve many functions and do has generic keys and controls can be used for a variety of

purpose. In contrast, these dedicated controls panes have been designed for a particular device and for a single use. This is

why they differ so much.

27

Usually microwave a flat plastic control panel. The reason is this, the microwave is used in the kitchen whilst

cooking, with hands that may be greasy or have food on them. The smooth controls have no gaps where food can

accumulate and clog buttons, so it can easily be kept clean an hygienic.

When using the washing machine you are handling dirty clothes, which may be grubby, but not to the same extent,

so the smooth easy-clean panel is less important. It has several major settings and the large buttons act both as control and

display.

ENVIRONMENT AND BIO SENSING

Although we are not always conscious of them, there are many sensors in our environment--

controlling automatic doors, energy saving lights, etc. and devices monitoring our behavior such as security

tags in shops. The vision of ubiquitous computing suggests that our world will be filled with such devices

PAPER: PRINTING AND SCANNING

Printing

Older printers had a fixed set of characters available on a print head. These varied from the traditional line printer to golf-

ball and daisy-wheel printers. To change a typeface or the size of type meant changing the print head, and was an awkward,

and frequently messy, job, but for many years the daisy-wheel printer was the only means of producing high-quality output

at an affordable price. However, the drop in the price of laser printers coupled with the availability of other cheap high-

quality printers means that daisy-wheels are fast becoming a rarity. All of the popular printing technologies, like screens,

build the image on the paper as a series of dots. This enables, in theory, any character set or graphic to be printed, Common

types of dot-based printers

Dot-matrix printers

 These use an inked ribbon, like a typewriter, but instead of a single character-shaped head striking the paper, a line of

pins is used, each of which can strike the ribbon and hence dot the paper. Horizontal resolution can be varied by altering the

speed of the head across the paper, and vertical resolution can be improved by sending the head twice across the paper at a

slightly different position. So, dot-matrix printers can produce fast draft-quality output or slower ‘letter’-quality output.

They are cheap to run, but could not compete with the quality of jet and laser printers for general office and home printing.

They are now only used for bulk printing, or where carbon paper is required for payslips, check printing, etc.)

Ink-jet and bubble-jet printers

 These operate by sending tiny blobs of ink from the print head to the paper. The ink is squirted at pressure from an

ink-jet, whereas bubble-jets use heat to create a bubble. Both are quite quiet in operation. The ink from the bubble-jet (being

a bubble rather than a droplet) dries more quickly than the ink-jet and so is less likely to smear. Both approach laser quality,

but the bubble-jet dots tend to be more accurately positioned and of a less broken shape.

Laser printer

 This uses similar technology to a photocopier: ‘dots’ of electrostatic charge are deposited on a drum, which then picks

up toner (black powder). This is then rolled onto the paper and cured by heat. The curing is why laser printed documents

come out warm, and the electrostatic charge is why they smell of ozone! In addition, some toner can be highly toxic if

inhaled, but this is more a problem for full-time maintenance workers than end-users changing the occasional toner

cartridge.

 Laser printers give nearly typeset-quality output, with top-end printers used by desktop publishing firms. Indeed, many

books are nowadays produced using laser printers.

 This resolution is measured in dots per inch (dpi). Imagine a sheet of graph paper, and building up an image by

putting dots at the intersection of each line. The number of lines per inch in each direction is the resolution in dpi. The most

common types of dot-based printers are dot-matrix printers, ink-jet printers and laser printers. These are listed roughly in

order of increasing resolution and quality, where dot-matrix printers typically have a resolution of 80–120 dpi rising to

about 300–600 dpi for ink-jet printers and 600–2400 dpi for laser printers. By varying the quantity of ink and quality of

paper, ink-jet printers can be used to print photo-quality prints from digital photographs. Dot-matrix printers are more often

rated in characters per second (cps), and typical speeds may be 200 cps for draft and 50 cps for letter-quality print.

28

 Color ink-jet printers are substantially cheaper than even monochrome laser printers. However, the recurrent costs of

consumables may easily dominate this initial cost. Both jet and laser printers have special-purpose parts (print cartridges,

toner, print drums), which need to be replaced every few thousand sheets; and they must also use high-grade paper. It may

be more difficult to find suitable grades of recycled paper for laser printers.

MEMORY

RAM AND SHORT-TERM MEMORY (STM)

 At the lowest level of computer memory are the registers on the computer chip, but these have little impact on the user

except in so far as they affect the general speed of the computer. Most currently active information is held in silicon-chip

random access memory (RAM). Different forms of RAM differ as to their precise access times, power consumption and

characteristics. Typical access times are of the order of 10 nanoseconds, that is a hundred-millionth of a second, and

information can be accessed at a rate of around 100 Mbytes (million bytes) per second. Typical storage in modern personal

computers is between 64 and 256 Mbytes.

 Most RAM is volatile, that is its contents are lost when the power is turned off. However, many computers have small

amount of non-volatile RAM, which retains its contents, perhaps with the aid of a small battery. This may be used to store

setup information in a large computer, but in a pocket organizer will be the whole memory.

Non-volatile RAM is more expensive so is only used where necessary, but with many notebook computers using very low-

power static RAM, the divide is shrinking.

DISKS AND LONG-TERM MEMORY (LTM)

 For most computer users the LTM consists of disks, possibly with small tapes for backup. The existence of backups, and

appropriate software to generate and retrieve them, is an important area for user security. However, we will deal mainly with

those forms of storage that impact the interactive computer user.

 There are two main kinds of technology used in disks: magnetic disks and optical disks. The most common storage

media, floppy disks and hard (or fixed) disks, are coated with magnetic material, like that found on an audio tape, on which

the information is stored. Typical capacities of floppy disks lie between 300 kbytes and 1.4 Mbytes, but as they are

removable.

 Hard disks may store from under 40 Mbytes to several gigabytes (Gbytes), that is several thousand million bytes.

Various forms of large removable media are also available, fitting somewhere between floppy disks and removable hard

disks, and are especially important for multimedia storage

 Optical disks use laser light to read and (sometimes) write the information on the disk. There are various high capacity

specialist optical devices, but the most common is the CD-ROM, using the same technology as audio compact discs.

 COMPRESSION

 Compression techniques can be used to reduce the amount of storage required for text, bitmaps and video. All of these

things are highly redundant. Consider text for a moment. In English, we know that if we use the letter ‘q’ then ‘u’ is almost

bound to follow. At the level of words, some words like ‘the’ and ‘and’ appear frequently in text in general, and for any

particular work one can find other common terms

 Compression algorithms take advantage of this redundancy. For example, Huffman encoding gives short codes to

frequent words , and runlength encoding represents long runs of the same value by length value pairs. Text can easily be

reduced by a factor of five and bitmaps often compress to 1% of their original size.

 For video, in addition to compressing each frame, we can take advantage of the fact that successive frames are often

similar. We can compute the difference between successive frames and then store only this – compressed, of course. More

sophisticated algorithms detect when the camera pans and use this information also. These differencing methods fail when

the scene changes, and so the process periodically has to restart and send a new, complete (but compressed) image.

 With these reductions it is certainly possible to store low-quality video at 64 kbyte/s; that is, we can store five hours of

highly compressed video on our 1 Gbyte hard disk. However, it still makes the humble video cassette look very good value.

29

 Probably the leading edge of video still and photographic compression is fractal compression. Fractals have been

popularized by the images of the Mandelbrot set (that swirling pattern of computer-generated colors seen on many T-shirts

and posters).

 Fractals refer to any image that contains parts which, when suitably scaled, are similar to the whole. If we look at an

image, it is possible to find parts which are approximately self-similar, and these parts can be stored as a fractal with only a

few numeric parameters.

 Fractal compression is especially good for textured features, which cause problems for other compression techniques.

The decompression of the image can be performed to any degree of accuracy, from a very rough soft-focus image, toone

more detailed than the original.

STORAGE FORMAT AND STANDARDS

 The most common data types stored by interactive programs are text and bitmap images, with increasing use of video

and audio, and this subsection looks at the ridiculous range of file storage standards. We will consider database retrieval in

the next subsection.

 The basic standard for text storage is the ASCII (American standard code for information interchange) character codes,

which assign to each standard printable character and several control characters an internationally recognized 7 bit code

(decimal values 0–127), which can therefore be stored in an 8 bit byte, or be transmitted as 8 bits including parity. Many

systems extend the codes to the values 128–255, including line-drawing characters, mathematical symbols and international

letters such as ‘æ’.

 The most common shared format is rich text format (RTF), which encodes formatting information including style

sheets. However, even where an application will import or export RTF, it may represent a cut-down version of the full

document style. RTF regards the document as formatted text, that is it concentrates on the appearance. Documents can also

be regarded as structured objects: this book has chapters containing sections, subsections . . . paragraphs, sentences, words

and characters.

 There are ISO standards for document structure and interchange, which in theory could be used for transfer between

packages and sites, but these are rarely used in practice. Just as the PostScript language is used to describe the printed page,

SGML (standard generalized markup language) can be used to store structured text in a reasonably extensible way. You can

define your own structures (the definition itself in SGML), and produce documents according to them. XML (extensible

markup language), a lightweight version of SGML, is now used extensively for web-based applications.For bitmap storage

the range of formats is seemingly unending.

 The stored image needs to record the size of the image, the number of bits per pixel, possibly a color map, as well as

the bits of the image itself. In addition, an icon may have a ‘hot-spot’ for use as a cursor. If you think of all the ways of

encoding these features, or leaving them implicit, and then consider all the combinations of these different encodings, you

can see why there are problems. And all this before we have even considered the effects of compression! There is, in fact, a

whole software industry producing packages that convert from one format to another.

PROCESSING AND NETWORKS

 Computers that run interactive programs will process in the order of 100 million instructions per second Effects of

finite processor speed.

 As we can see, speed of processing can seriously affect the user interface. These effects must be taken into account

when designing an interactive system. There are two sorts of faults due to processing speed: those when it is too slow, and

those when it is too fast!

 This was a functional fault, in that the program did the wrong thing. The system is supposed to draw lines from where

the mouse button is depressed to where it is released. However, the program gets it wrong – after realizing the button is

down, it does not check the position of the mouse fast enough, and so the user may have moved the mouse before the start

position is registered. This is a fault at the implementation stage of the system rather than of the design. But to be fair, the

programmer may not be given the right sort of information from lower levels of system software.

30

 A second fault due to slow processing is where, in a sense, the program does the right thing, but the feedback is too

slow, leading to strange effects at the interface. In order to avoid faults of the first kind, the system buffers the user input;

that is, it remembers keypresses and mouse buttons and movement. Unfortunately, this leads to problems of its own.

 One example of this sort of problem is cursor tracking, which happens in character-based text editors. The user is

trying to move backwards on the same line to correct an error, and so presses the cursor-left key. The cursor moves and

when it is over the correct position, the user releases the key. Unfortunately, the system is behind in responding to the user,

and so has a few more cursor-left keys to process – the cursor then overshoots. The user tries to correct this by pressing the

cursor-right key, and again overshoots.

A similar problem, icon wars, occurs on window systems. The user clicks the mouse on a menu or icon, and nothing

happens; for some reason the machine is busy or slow.

The terms of Interaction

Domain

A domain defines an area of expertise and knowledge in some real-world activity. Some examples of domains are graphic

design, authoring and process control in a factory. A domain consists of concepts that highlight its important aspects. In a

graphic design domain, some of the important concepts are geometric shapes, a drawing surface and a drawing utensil.

Tasks

 Operations to manipulate the concepts of a domain. A goal is the desired output from a performed task. For example,

one task within the graphic design domain is the construction of a specific geometric shape with particular attributes on the

drawing surface. A related goal would be to produce a solid red triangle centered on the canvas. An intention is a specific

action required to meet the goal.

Task analysis involves the identification of the problem space for the user of an interactive system in terms of the domain,

goals, intentions and tasks.

Goal

 A goal is the desired output from a performed task. For example, one task within the graphic design domain is

the construction of a specific geometric shape with particular attributes on the drawing surface. A related goal would be to

produce a solid red triangle centered on the canvas. So, goal is ultimate result, The execution–evaluation cycle

Norman’s model of interaction is perhaps the most influential in Human–Computer Interaction, possibly because of its

closeness to our intuitive understanding of the interaction between human user and computer . The user formulates a plan of

action, which is then executed at the computer interface. When the plan, or part of the plan, has been executed, the user

observes the computer interface to evaluate the result of the executed plan, and to determine further actions.

The interactive cycle can be divided into two major phases: execution and evaluation. These can then be subdivided into

further stages, seven in all. The stages in Norman’s model of interaction are as follows:

 The interaction

1. Establishing the goal.

2. Forming the intention.

3. Specifying the action sequence.

4. Executing the action.

5. Perceiving the system state.

6. Interpreting the system state.

7. Evaluating the system state with respect to the goals and intentions.

Each stage is, of course, an activity of the user. First the user forms a goal. This is the user’s notion of what needs to be

done and is framed in terms of the domain, in the task language.

31

The two major parts, execution and evaluation, of interactive cycle are further subdivided into seven stages, where

each stage is an activity of the user. Seven stages of action are shown in figure. To understand these we see an example,

which was also used by Norman.

Imagine you are sitting reading as evening falls. You decide you need more light; that is you establish the goal to get lighter.

Form there you form an intention to switch on the desk lamp, and you specify the actions required to reach over and press

the lamp switch. If some one else is closer, the intention may be different-you may ask them to switch on the light for you.

Your goal is the same but the intention and actions are different. When you have executed the action you perceive the result,

either the light is on or it isn't and you interpret this, based on your knowledge of the world. For example, if the light does

not come on you may interpret this as indicating he bulb has blown or the lamp is not plugged into the mains, you will

formulate the new state according to the original goals is there is now enough light? It so, the cycle is completed. It not, you

may formulate a new intention to switch on the main ceiling light.

Norman also describes the two gulfs, which represent the problems that are caused by some interfaces to their users.

Gulf of execution

 Gulf of execution is the difference between the user's formulation of the actions to reach the goal and the actions allowed by

the system. If the action allowed by the system correspond to those intended by the user, the interaction will effective. The

interface should therefore aim to reduce this gulf of execution.

Gulf of evaluation

 The gulf of evaluation is the distance between the physical presentation of the system state and the expectation of the user.

If the user can readily evaluate the presentation in terms of his goal, the gulf of evaluation is small. The more effort that is

required on the part of the user to interpret the presentation, the less effective the interaction.

The interaction framework

 The interaction framework attempts a more realistic description of interaction by including the system explicitly, and

breaks it into four main components, as shown in Figure3.2. The nodes represent the four major components in an

interactive system – the System, the User, the Input and the Output .

 Each component has its own language. In addition to the User’s task language and the System’s core language,

which we have already introduced, there are languages for both the Input and Output components. Input and Output

together form the INTERFACE

 The core language describes computational attributes of the domain relevant to the system state, whereas

the task language describes psychological attributes of the domain relevant to the user state. There are also languages for

both the input and output components.

Input and output together form the interface. As the interface sits between the user and the system, there are four steps in the

interactive cycle, each corresponding to a translation from one component to another, as shown by the labeled arcs in

figure3.2.

32

 The user begins the interactive cycle with the formulation of a goal and a task achieves that goal. The only way the

user can manipulate the machine is through the input, and so the task must be articulated within the input language, the input

language is translated into the core language as operations to be performed by the system. The system then transforms itself

as described by the operations; the execution phase of the cycle is complete and the evaluation phase now begins.

 The system is in a new state, which must now be communicated to the user. The current values of system attributes

are rendered as concepts or features of the output. It is then up to the user to observe the output and assess the results of the

interaction relative to the original goal, ending the evaluation phase and, hence, the interactive cycle.

There are four main translations involved in the interaction: articulation, performance, presentation and

observation.

 The user's formulation of the desired task to achieve some goal needs to be articulated in the input language. The

tasks are responses of the user and they need to be translated to stimuli for the input. As pointed out above, this articulation

is judged in terms of the coverage from tasks to input and the relative ease with which the translation can be accomplished.

The task is phrased in terms of certain psychological attributes that highlight the important features of the domain for the

user. If these psychological attributes map clearly onto the input language, then articulation of the task will be made much

simpler

Ergonomics

Ergonomics (or human factors) is traditionally the study of the physical characteristic of the interaction: how the controls are

designed, the physical environment in which the interaction takes place, and the layout and physical qualities of the screen.

A primary focus is on user performance and how the interface enhances or detracts from this. In seeking to evaluate these

aspects of the interaction, ergonomics will certainly also touch upon human psychology and system constraints. It is a large

and established field, which is closely related to but distinct from HCI.

 Physical aspects of Interface are as follow: ·

Arrangement of controls and displays ·

 The physical environment ·

 Health issues :Use of colors

 Arrangement of controls and displays

➢ Functional controls and displays are organized so that those that are functionally related are placed together;

➢ Sequential controls and displays are organized to reflect the order of their use in a typical interaction (this may be

especially appropriate in domains where a particular task sequence is enforced, such as aviation);

➢ Frequency controls and displays are organized according to how frequently they are used, with the most commonly

used controls being the most easily accessible.

In addition to the organization of the controls and displays in relation to each other, the entire system interface must be

arranged appropriately in relation to the user’s position. So, for example, the user should be able to reach all controls

necessary and view all displays without excessive body movement. Critical displays should be at eye level. Lighting should

be arranged to avoid glare and reflection distorting displays.

Health issues

➢ Physical position As we noted in the previous section, users should be able to reach all controls comfortably and see all

displays. Users should not be expected to stand for long periods and, if sitting, should be provided with back support. If a

particular position for a part of the body is to be adopted for long periods (for example, in typing) support should be

provided to allow rest.

➢ Temperature Although most users can adapt to slight changes in temperature without adverse effect, extremes of hot or

cold will affect performance and, in excessive cases, health. Experimental studies show that performance deteriorates at

high or low temperatures, with users being unable to concentrate efficiently.

33

➢ Lighting The lighting level will again depend on the work environment. However, adequate lighting should be provided

to allow users to see the computer screen without discomfort or eyestrain. The light source should also be positioned to

avoid glare affecting the display.

➢ Noise Excessive noise can be harmful to health, causing the user pain, and in acute cases, loss of hearing. Noise levels

should be maintained at a comfortable level in the work environment. This does not necessarily mean no noise at all. Noise

can be a stimulus to users and can provide needed confirmation of system activity.

➢ Time The time users spend using the system should also be controlled.

The use of color

Colors used in the display should be as distinct as possible and the distinction should not be affected by changes in contrast.

Blue should not be used to display critical information. If color is used as an indicator it should not be the only cue:

additional coding information should be included.

The colors used should also correspond to common conventions and user expectations. Red, green and yellow are colors

frequently associated with stop, go and standby respectively. Therefore, red may be used to indicate emergency and alarms;

green, normal activity; and yellow, standby and auxiliary function. These conventions should not be violated without very

good cause.

Interaction style

Interaction is communication between computer and human (user). For a successful enjoyable communication interface

style has its own importance.

There are a number of common interface styles including

➢ Command line interface

➢ Menus

➢ Natural language Question/answer and query dialog

➢ Form fills and spreadsheets

➢ WIMP

➢ Point and click

➢ Three-dimensional interfaces

Command line interface

Command line interface was the first interactive dialog style to be commonly used and, in spite of the availability of menu-

driven interface, it is still widely used. It provides a means of expressing instructions to the computer directly, using some

function keys, single characters, abbreviations or whole-word commands. Command line interface are powerful in that they

offer direct access to system functionality, and can be combined to apply a number of tools to the same data. They are also

flexible: the command often has a number of options or parameters that will vary its behavior in some way, and it can be

applied to many objects at once, making it useful for repetitive tasks.

Menus

In a menu-driven interface, the set of options available to the user is displayed on the screen, and selected using the mouse,

or numeric or alphabetic keys. Since the options are visible they are less demanding of the user, relying on recognition

rather than recall. However, menu options still need to be meaningful and logically grouped to aid recognition.

Often menus are hierarchically ordered and the option required is not available at the top layer of the hierarchy. The

grouping and naming of menu options then provides the only cue for the user to find the required option. Such systems

either can be purely text based, with the menu options being presented as numbered choices (see Figure3.8), or may have a

graphical component in which the menu appears within a rectangular box and choices are made, perhaps by typing the initial

34

letter of the desired selection, or by entering the associated number, or by moving around the menu with the arrow keys.

Natural Language

Perhaps the most attractive means of communicating with computers, at least at first glance, is by natural language. Users

unable to remember a command or lost in a hierarchy of menus, may long for the computer that is able to understand

instructions expressed in everyday words. Unfortunately, however, the ambiguity of natural language makes it very difficult

for a machine to understand.

Question/answer and query dialog

 Question and answer dialog is a simple mechanism for providing input to an application in specific domain. The user is

asked a series of questions and so is led through the interaction step by step. These interfaces are easy to learn and use, but

are limited in functionality and power. As such, they are appropriate for restricted domains and for novice or casual users.

Query languages, on the other hand, are used to construct queries to retrieve information from a database. They use natural-

language-style phrases, but in fact require specific syntax, as well as knowledge of database structure.

Queries usually require the user to specify an attribute or attributes for which to search the database, as well as the

attributes of interest to be displayed. This is straightforward where there is a single attribute, but becomes complex when

multiple attributes are involved, particularly of the user is interested in attribute A or attribute B, or attribute A and not

attribute B, or where values of attributes are to be compared. Most query language do not provide direct confirmation of

what was requested, so that the only validation the user has is the result of the search. The effective use of query languages

therefore requires some experience.

Form-fills and spreadsheets

Form-filling interfaces are used primarily for data entry but can be useful in data retrieval applications. The user is presented

with a display resembling a paper form, with slots to fill in as shown in figure. Most form-filling interfaces allow easy

movement around the form and allow some fields to be left blank. They also require correction facilities, as users may

change their minds or make a mistake about the value that belongs in each field. Spreadsheets are sophisticated variation of

form filling. The spreadsheet comprises a grid of cells, each of which can contain a value or a formula.

The WIMP Interfaces

Currently many common environments for interactive computing are examples of the WIMP interface style, often

simply called windowing systems. WIMP stands for windows, icons, menus, and pointers, and is default interface style for

the majority of interactive computer systems in use today, especially in the PC and desktop workstation arena.

Point and Click interface

In most multimedia systems and in web browsers, virtually all actions take only a single click of the mouse button.

You may point at a city on a map and when you click a window opens, showing you tourist information about the city. You

may point at a word in some text and when you click you see a definition of the word. You may point at a recognizable

iconic button and when you click some action is performed.

Three-dimensional interfaces

Three-dimensional interfaces

There is an increasing use of three-dimensional effects in user interfaces. The most obvious example is virtual

reality, but VR is only part of a range of 3D techniques available to the interface designer.The simplest technique is where

ordinary WIMP elements, buttons, scroll bars, etc, are given a 3D appearance using shading, giving the appearance of

being sculpted out of stone.

35

The WIMP Interfaces

Windows

Windows are areas of the screen that behave as if they were independent terminals in their own right. A window can

usually contain text or graphics, and can be moved or resized. More than one window can be on a screen at once,

allowing separate tasks to be visible at the same time. Users can direct their attention to the different windows as they

switch from one thread of work to another. If one window overlaps the other, the back window is partially obscured, and

then refreshed when exposed again. Overlapping windows can cause problems by obscuring vital information, so windows

may also be tiled, when they adjoin but do not overlap each other.

Alternatively, windows may be placed in a cascading fashion, where each new window is placed slightly to the left and

below the previous window. In some systems this layout policy is fixed, in others the user can select it.

Usually windows have various things associated with them that increase their usefulness. Scrollbars are one such

attachment, allowing the user to move the contents of the window up and down, or from side to side. This makes the

window behave as if it were a real window onto a much larger world, where new information is brought into view by

manipulating the scrollbars. There is usually a title bar attached to the top of a window, identifying it to the user, and there

may be special boxes in the corners of the window to aid resizing, closing, or making as large as possible. Each of these can

be seen in the figure

In addition, some systems allow windows within windows. For example, in Microsoft Office applications, such as Excel and

Word, each application has its own window and then within this each document has a window. It is often possible to have

different layout policies within the different application windows. Icons Windows can be closed and lost forever, or they can

be shrunk to some very reduced representation. A small picture is used to represent a closed window, and this representation

is known as an icon. By allowing icons, many windows can be available on the screen at the same time, ready to be

expanded to their full size by clicking on the icon. Shrinking a window to its icon is known as iconifying the window. When

a user temporarily does not want to follow a particular thread of dialog, he can suspend that dialog by iconifying the window

containing the dialog. The icon saves space on the screen and serves as a remainder to the user that he can subsequently

resume the dialog by opening up the window. Figure shows a few examples of icons used in a typical windowing system

(Microsoft).

Icons can also be used to represent other aspects of the system, such as a waste basket for throwing unwanted files into, or

various disks, programs or functions, that are accessible to the user. Icon can take many forms: they can be realistic

representation of the objects that they stand for, or they can be highly stylized. They can even be arbitrary symbols, but

these can be difficult for users to interpret.

Pointers

The Pointer is an important component of the WIMP interface, since the interaction style required by WIMP relies very

much on pointing and selecting things such as icons. The mouse provides an input device capable of such tasks, although

joysticks and trackballs are other alternatives. The user is presented with a cursor on the screen that is controlled by the

input device.

A verity of pointer cursors is shown in figure. The different shape of cursor are often used to distinguish modes, for example

the normal pointer cursor maybe an arrow, but change to change to cross-hairs when drawing a line. Cursors are also used to

tell the user about system activity, for example a watch or hourglass cursor may be displayed when the system s busy

reading a file. Pointer cursors are like icons, being small bitmap images, but in addition all cursors have a hot-spot, the

location to which they point

Menus

36

The last main feature of the windowing system is the menu, an interaction technique that is common across many non-

windowing systems as well. A menu presents a choice of operations or services that can be performed by the system at a

given time. As we discussed our ability to recall information is inferior to our ability to recognize it from some visual cue.

Menus provide information cues in the form of an ordered list of operations that can be scanned. This implies that the names

used for the commands in the menu should be meaningful and informative. The pointing device is used to indicate the

desired option.

As the pointer moves to the position of a menu item, the item is usually highlighted to indicate that it is the potential

candidate for selection. Selection usually requires some additional user action, such as pressing a button on the mouse that

controls the pointer cursor on the screen or pressing some special key on the keyboard.

 Menus are inefficient when they have too many items, and so cascading menus are utilized, in which item selection opens

up another menu adjacent to the item, allowing refinement of the selection. Several layers of cascading menus can be used.

The main menu can be visible to the user all the time, as a menu bar and submenus can be pulled down or across from it

upon request.

Menu bars are often placed at the top of the screen or at the top of each window. Alternative includes menu bars along one

side of the screen, or even placed amongst the windows in the main `desktop' area. Websites use a variety of menu bar

locations, including top, bottom and either side of the screen. Alternatively, the main menu can be hidden and upon request

it will pop up onto the screen. These pop-up menus are often used to present context- sensitive options, for example

allowing one to examine properties of particular on- screen objects.

In some systems they are also used to access more global actions when the mouse is depressed over the screen background.

Pull-down menus are dragged down from the title at the top of the screen, by moving the mouse pointer into the title par

area and pressing the button. Fall-down menus are similar, except that the menu automatically appears when the mouse

pointer enters the title bar, without the user having to press the button. Some menus explicitly asked to go away. Pop up

menus appear when a particular region of the screen, may be designated by an icon, is selected, but they only stay as long as

the mouse button is depressed.

Another approach to menu selection is to arrange the options in a circular fashion. The pointer appears in the center of the

circle, and so there is the same distance to travel to any of the selections. This has the advantages that it is easier to select

items, since they can each have a larger target area, and that the selection time for each item is the same, since the pointer is

equidistant from them all. However, these pie menus take up more screen space and are therefore less common in interface.

 The major problems with menus in general are deciding what items to include and how to group those items.

Including too many items makes menus too long or creates too many of them, whereas grouping causes problems in that

items that relate to the same topic need to come under the same heading, yet many items could be grouped under more than

one heading. In pull-down menus the menu label should be chosen to reflect the function of the menu items, and items

grouped within menus by function. These groupings should be consistent across applications so that the user can transfer

learning to new applications. Menu items should be ordered in the menu according to importance and frequency of use, and

appropriate functionalities should be kept apart to prevent accidental selection of the wrong function, with potentially

disastrous consequences.

Keyboard accelerators

 Menus often offer keyboard accelerators, key combinations that have the same effect as selecting the menu item.

This allows more expert users, familiar with the system, to manipulate things without moving off the keyboard, which is

37

often faster. The accelerators are often displayed alongside the menu item so that frequent use makes them familiar. Buttons

are individual and isolated regions within display that can be selected by the user to invoke specific operations. These

regions are referred to as buttons because they are purposely made to resemble the push buttons you would find on a control

panel. `Pushing' the button invokes a command, the meaning of which is usually indicated by a textual label or a small icon.

 Radio Buttons can also be used to toggle between two states, displaying status information such as whether the

current font is italicized or not in a word processor, or selecting options on a web form. Such toggle buttons can be grouped

together to allow a user to select one feature form a set of mutually exclusive options, such as the size in points of the

current font. These are called radio buttons. Check boxes It a set of options is not mutually exclusive, such as font

characteristics like bold, italic and underlining, and then a set of toggle buttons can be used to indicate the on/off status of

the options. This type of collection of buttons is sometimes referred to as check boxes.

Toolbars

 Many systems have a collection of small buttons, each with icons, placed at the top or side of the window and

offering commonly used functions. The function of this toolbar is similar to a menu bar, but as the icons are smaller than the

equivalent text more functions can be simultaneously displayed. Sometimes the content of the toolbar is fixed, but often

users can customize it, either changing which functions area made available, or choosing which of several predefined

toolbars is displayed.

 Palettes

 In many application programs, instructions can either one of several modes. The defining characteristic of modes is

that the interpretation of actions, such as keystrokes or gestures with the mouse, changes as the mode change. For example,

using the standard UNIX text editor vi, keystrokes can be interpreted either as operations to insert characters in the

document or as operations to perform file manipulation. Problems occur if the user is not aware of the current mode.

 Palettes are a mechanism for making the set of possible modes and the active mode visible to the user. A palette is

usually a collection of icons that are reminiscent of the purpose of the various modes. An example in a drawing package

would be a collection of icons to indicate the pixel color or pattern that is used to fill in objects, much like an artist's palette

for paint.

Some systems allow the user to create palettes from menus or toolbars. In the case of pull-down menus, the user may be able

`tear off' the menu, turning it into a palette showing the menu items. In the case of toolbars, he may be able to drag the

toolbar away from its normal position and place it anywhere on the screen. Tear-off menus are usually those that are heavily

graphical anyway, for example line style of color selection in a drawing package.

Dialog boxes

 Dialog boxes are information windows used by the system to bring the user's attention to some important

information, possibly an error or a warning used to prevent a possible error. Alternatively, they are used to invoke a sub

dialog between user and system for a very specific task that will normally be embedded within some larger task. For

example, most interactive applications result in the user creating some file that will have to be named and stored within the

filing system. When the user or the file and indicate where it is to be located within the filing system. When the save sub

dialog is complete, the dialog box will disappear. Just as windows are used to separate the different threads of user-system

dialog, so too are dialog boxes used to factor out auxiliary task threads from the main task dialog.

Interaction Paradigms

 Paradigms for interaction have for the most part been dependent upon technological advances and their creative

application to enhance interaction.

Time sharing

In the 1940s and 1950s, the significant advances in computing consisted of new hardware technologies. Mechanical relays

were replaced by vacuum electron tubes. Tubes were replaced by transistors, and transistors by integrated chips, all of which

meant that the amount of sheer computing power was increasing by orders of magnitude. By the 1960s it was becoming

apparent that the explosion of growth in computing power would be wasted if there were not an equivalent explosion of

ideas about how to channel that power. One of the leading advocates of research into human-centered applications of

38

computer technology was J.C.R Licklider, who became the director of the Information Processing Techniques Office of the

US Department of Defense's Advanced Research Agency (ARPA).

 One of the major contributions to come out of this new emphasis in research was the concept of time-sharing, in

which a single computer could support multiple users. Previously, the human was restricted to batch sessions, in which

complete jobs were submitted on punched cards or paper tape to an operator who would then run them individually on the

computer.

 Time-sharing systems of the 1960s made programming a truly interactive venture and brought about a subculture

of programmers known as `hackers' single-minded masters of detail who took pleasure in understanding complexity.

Though the purpose of the first interactive time-sharing systems was simply to augment the programming capabilities of the

early hackers, it marked a significant stage in computer applications for human use.

Video display units

 As early as the mid-1950s researchers were experimenting with the possibility of presenting and manipulating

information from a computer in the form of images on a video display unit (VDU). These display screens could provide a

more suitable medium than a paper printout for presenting vast quantities of strategic information for rapid assimilation. It

was not until 1962, however, when a young graduate student at the Massachusetts Institute of Technology (MIT), Ivan

Sutherland, astonished the established computer science community with the Sketchpad program, that the capabilities of

visual images were realized.

 Sketchpad demonstrated two important ideas. First, computers could be used for more than just data processing.

They could extend the user's ability to abstract away from some levels of detail, visualizing and manipulating different

representations of the same information.

 Programming toolkits Dougles Engelbart's ambition since the early 1950s was to use computer technology as a

means of complementing human problem-solving activity. Engelbart's idea as a graduate student at the University of

California at Berkeley was to use the computer to teach humans. This dream of naïve human users actually learning from a

computer was a stark contrast to the prevailing attitude of his contemporaries that computers were purposely complex

technology that only the intellectually privileged were capable of manipulating. Personal computing Programming toolkits

provide a means for those with substantial computing skills to increase their productivity greatly. But Engelbart's vision was

not exclusive to the computer literate.

 The decade of the 1970s saw the emergence of computing power aimed at the masses, computer literate or not. One

of the first demonstrations that the powerful tools of the hacker could be made accessible to the computer novice was a

graphics programming language for children called LOGO. The inventor, Seymen Papert, wanted to develop a language that

was easy for children to use.

Window systems and the WIMP interface

 With the advent and immense commercial success of personal computing, the emphasis for increasing the usability

of computing technology focused on addressing the single user who engaged in a dialog with the computer in order to

complete some work. Humans are able to think about more than one thing at a time, and in accomplishing some piece of

work, they frequently interrupt their current train of thought to pursue some other related piece of work.

 A personal computer system which forces the user to progress in order through all of the tasks needed to achieve

some objective, from beginning to end without any diversions, does not correspond to that standard working pattern. If the

personal computer is to be an effective dialog partner, to must be as flexible in its ability to change the topic as the human is.

But the ability to address the needs of a different user task is not the only requirement.

 Computer systems for the most part react to stimuli provided by the user, so they are quite amenable to a wandering

dialog initiated by the user. As the ser engages in more than one plan of activity over a stretch of time, it becomes difficult

for him to maintain the status of the overlapping threads of activity. Interaction based on windows, icons, menus, and

pointers--the WIMP interface--is now commonplace. These interaction devices first appeared in the commercial

marketplace in April 1981, when Xerox Corporation introduced the 8010 Star Information System

Direct Manipulation

39

In the early 1980s as the price of fast and high-quality graphics hardware was steadily decreasing, designers were beginning

to see that their products were gaining popularity as their visual content increased.

 As long as the user-system command line prompt computing was going to stay within the minority population of

the hackers who reveled in the challenge of complexity. In a standard command line interface, the only way to get any

feedback on the results of previous interaction is to know that you only have to ask for it and to know how to ask for it.

Rapid visual and audio feedback on a high-resolution display screen or through a high-quality sound system makes it

possible to provide evaluative information for every executed user action.

 Rapid feedback is just one feature of the interaction technique known as direct manipulation. Ben Shneiderman is

attributed with coining this phrase in 1982 to describe the appeal of graphics-based interactive systems such as Sketchpad

and the Xerox Alto and Star. He highlights the following features of a direct manipulation interface.

➢ visibility of the objects of interest incremental action at the interface with rapid feedback on all actions

➢ reversibility of all actions, so that users are encouraged to explore without severe penalties

➢ syntactic correctness of all actions, so that every user action is a legal

➢ operation replacement of complex command language with actions to manipulate

➢ directly the visible object

The first real commercial success which demonstrated the inherent usability of direct manipulation interfaces for the general

public was the Macintosh personal computer, introduced by Apple Computer, Inc.

Hypertext

 In 1945, Vannevar Bush, then the highest-ranking scientific administrator in the US war effort, published an article

entitled `As We May Think' in The Atlantic Monthly. Bush was in charge of over 6000 scientists who had greatly pushed

back the frontiers of scientific knowledge during the Second World War. He recognized that a major drawback of these

prolific research efforts was that it was becoming increasingly difficult to keep in touch with the growing body of scientific

knowledge in the literature.

In his opinion, the greatest advantages of this scientific revolution were to be gained by those individuals who were able to

keep abreast of an ever-increasing flow of information. To that end, he described an innovative and futuristic information

storage and retrieval apparatus the memex , which was constructed with technology wholly existing in 1945 and aimed at

increasing the human capacity to store and retrieve, connected pieces of knowledge by mimicking our ability to create

random associative links.

 An unsuccessful attempt to create a machine language equivalent of the memex on early 1960s computer hardware

led Nelson on a lifelong quest to produce Xanadu, a potentially revolutionary worldwide publishing and information

retrieval system based on the idea of interconnected, non-linear text and other media forms.

 A traditional paper is read from beginning to end, in a linear fashion. But within that text, there are often ideas or

footnotes that urge the reader to digress into richer topic. The linear format for information does not provide much support

for this random and associated browsing task. What Bush's memex suggested was to preserve the non- linear browsing

structure in the actual documentation. Nelson coined the phrase hypertext in the mid 1960s to reflect this non-linear text

structure

Multi-modality

The majority of interactive systems still use the traditional keyboard and a pointing device, such as a mouse, for input and

are restricted to a color display screen with some sound capabilities for output. Each of these input and output devices can

be considered as communication channels for the system and they correspond to certain human communication channels.

 A multi-modal interactive system is a system that relies on the use of multiple human communication channels. Each

different channel for the user is referred to as a modality of interaction. In this sense, all interactive systems can be

considered multi-model, for human have always used their visual and haptic channels in manipulating a computer. In fact,

we often use our audio channel to hear whether the computer is actually running properly. However, genuine multi-modal

systems rely to an extent on simultaneous use of multiple communication channels for both input and output. Humans quite

naturally process information by simultaneous use of different channels.

40

Computer-supported cooperative work

 Another development in computing in the 1960s was the establishment of the first computer networks, which

allowed communication between separate machines.

Personal computing was all about providing individuals with enough computing power so that they were liberated from

dumb terminals, which operated on a time- sharing systems. It is interesting to note that as computer networks become

widespread, individuals retained their powerful workstations but now wanted to reconnect themselves to the rest of the

workstations in their immediate working environment, and even throughout the world. One result of this reconnection was

the emergence of collaboration between individuals via the computer called computer supported cooperative work, or

CSCW.

 The main distinction between CSCW systems and interactive systems designed for a single user is that designer can

no longer neglect the society within which any single user operates. CSCW systems are built to allow interaction between

humans via the computer and so the needs of the many must be represented in the one product.

 World Wide Web

 Probably the most significant recent development interactive computing is the World Wide Web, often referred to

as just the web, or WWW. The web is built on top of the Internet, and offers an easy to use, predominantly graphical

interface to information, hiding the underlying complexities of transmission protocols, addresses and remote access to data.

The Internet is simply a collection of computers, each linked by any sort of data connections, whether it be slow telephone

line and modem or high-bandwidth optical connection. The computers of the Internet all communicate using common data

transmission protocols and addressing systems. This makes it possible for anyone to read anything from anywhere, in

theory, if it conforms to the protocol. The web builds on this with its own layer of network protocol, a standard markup

notation for laying out pages of information and a global naming scheme.

Web pages can contain text, color images, movies, sound and, most important, hypertext links to other web pages.

Hypermedia documents can therefore be published by anyone who has access to a computer connected to the Internet.

Ubiquitous computing

 In the late 1980s, a group of researchers at Xerox PARC led by Mark Weiser, initiated a research program with

the goal of moving human-computer interaction away from the desktop and out into our everyday lives. Weiser observed.

The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they

are indistinguishable from it. These words have inspired a new generation of researchers in the area of ubiquitous

computing. Another popular term for this emerging paradigm is pervasive computing, first coined by IBM.

The intention is to create a computing infrastructure that permeates our physical environment so much that we do not notice

the computer may longer.

 A good analogy for the vision of ubiquitous computing is the electric motor. When the electric motor was first

introduced, it was large, loud and very noticeable. Today, the average household contains so many electric motors that we

hardly ever notice them anymore. Their utility led to ubiquity and, hence, invisibility. Sensor-based and context-aware

interaction The yard-scale, foot-scale and inch-scale computers are all still clearly embodied devices with which we interact,

whether or not we consider them `computers'. There are an increasing number of proposed and existing technologies that

embed computation even deeper, but unobtrusively, into day-to-day life. Weiser's dream was computers anymore', and the

term ubiquitous computing encompasses a wide range from mobile devices to more pervasive environments.

Sensor-based and context-aware interaction

 The yard-scale, foot-scale and inch-scale computers are all still clearly embodied devices with which we interact,

whether or not we consider them `computers'. There are an increasing number of proposed and existing technologies that

embed computation even deeper, but unobtrusively, into day-to-day life. Weiser's dream was computers anymore', and the

term ubiquitous computing encompasses a wide range from mobile devices to more pervasive environments.

UNIT 2 – DESIGN AND SOFTWARE PROCESS

2.1 INTERACTION DESIGN BASICS:

2.1.1 INTRODUCTION

• design: – what it is, interventions, goals, constraints

• the design process – what happens when

• users – who they are, what they are like …

• scenarios– rich stories of design

• navigation– finding your way around a system

• iteration and prototypes

2.1.2 WHAT IS DESIGN?

achieving goals within constraints

goals – purpose-who is it for, why do they

want it constraints- materials, platforms

trade-offs- Choosing goals and constraints

2.1.2.1 THE GOLDEN RULE OF DESIGN

 understand your materials - For Human–Computer Interaction the obvious materials are the human

and the computer.

That is we must:

understand computers – limitations, capacities, tools, platform

understand people – psychological, social aspects, human error.

2.1.2.2 TO ERR IS HUMAN

People make mistakes. This is not ‘human error’, an excuse to hide behind in accident reports, it is

human nature. Systems should be designed to reduce the likelihood of those mistakes and to minimize

the consequences when mistakes happen.

If you design using a physical material, you need to understand how and where failures would occur and

strengthen the construction, build in safety features or redundancy.

2.1.3 THE PROCESS OF DESIGN

A system has been designed and built, and only when it proves unusable do they think to ask how to do

it right! In other companies usability is seen as equivalent to testing – checking whether people can use it and

fixing problems, rather than making sure they can from the beginning. Usability is designed in from the start.

View of four main phases plus an iteration loop, focussed on the design of interaction (Figure 2.1).

Fig 2.1 Interaction Design process

Requirements – what is wanted. The first stage is establishing what exactly is needed. As a precursor to this

it is usually necessary to find out what is currently happening.

Used for this in HCI: interviewing people, videotaping them, looking at the documents and objects that they

work with, observing them directly.

Analysis The results of observation and interview need to be ordered in some way to bring out key issues and

communicate with later stages of design.

Design There is a central stage when you move from what you want, to how to do it. We need to record our

design choices in some way and there are various notations and methods to do this, including those used to

record the existing situation.

Iteration and prototyping Humans are complex and we cannot expect to get designs right first time. We

therefore need to evaluate a design to see how well it is working and where there can be improvements. Most

user interface design therefore involves some form of prototyping, producing early versions of systems to try

out with real users.

Implementation and deployment Finally, we need to create it and deploy it. This will involve writing code,

perhaps making hardware, writing documentation and manuals– everything that goes into a real system that

can be given to others.

2.1.4 USER FOCUS:

 know your users

• who are they?

• probably not like you!

• talk to them

• watch them

use your imagination

2.1.5 SCENARIOS

• stories for design

Communicate with others – other designers, clients or users. It is easy to misunderstand each other

while discussing abstract ideas. Concrete examples of use are far easier to share.

Validate other models A detailed scenario can be ‘played’ against various more formal

representations such as task models or dialog and navigation models

Express dynamics Individual screen shots and pictures give you a sense of what a system would look

like, but not how it behaves.

• linearity

Time is linear Our lives are linear as we live in time and so we find it easier to understand simple

linear narratives. We are natural storytellers and story listeners.

But no alternatives Real interactions have choices, some made by people, some by systems. A simple

scenario does not show these alternative paths. It is easy to miss the unintended things a person may

do.

• What will users want to do?

• step-by-step walkthrough

– what can they see (sketches, screen shots)

– what do they do (keyboard, mouse etc.)

– what are they thinking?

 use and reuse throughout design

• use scenarios to communicate with others

– designers, clients, users

• validate other models

– ‘play’ it against other models

• express dynamics

– screenshots – appearance

Scenarios are a resource that can be used and reused throughout the design process.

2.1.6 NAVIGATION DESIGN

 Navigation within the application You need to be able to understand what will happen when a button is

pressed, to understand where you are in the interaction.

We are focussing on the computer system itself. You interact at several levels:

 Widgets The appropriate choice of widgets and wording in menus and buttons will help you know how to

use them for a particular selection or action.

 Screens or windows You need to find things on the screen, understand the logical grouping of buttons.

 Environment The word processor has to read documents from disk, perhaps some are on remote

networks. You swap between applications, perhaps cut and paste. You can see similar levels in other types of

application and device, as Table 2.1 shows Level of Interaction

2.1 Levels of Interaction

There are differences; for example, in the web we have less control of how people enter a site and on a

physical device we have the same layout of buttons and displays no matter what the internal state.

When considering the structure of an application is to think about actual use:

o Who is going to use the application?

o How do they think about it?

o What will they do with it?

This can then drive the second task – thinking about structure. Individual screens or the layout of devices will

have their own structure.

Two main kinds of issue:

➢ local structure

 looking from one screen or page out

➢ global structure

 structure of site, movement between screens.

2.1.6.1 LOCAL STRUCTURE

 Users have some idea of what they are after and a partial model of the system. If users had perfect

knowledge of what they wanted and how the system worked they could simply take the shortest path to what

they want, pressing all the right buttons and links. However, in a world of partial knowledge users through the

system. The important thing is not so much that they take the most efficient route, but that at each point in the

interaction they can make some assessment of whether they are getting closer to their goal.

To do this goal seeking, each state of the system or each screen needs to give the user enough knowledge of

what to do to get closer to their goal. To get you started, here are four things to look for when looking at a

single web page, screen or state of a device.

o knowing where you are

o knowing what you can do

o knowing where you are going – or what will happen

o knowing where you’ve been – or what you’ve done.

The screen, web page or device displays should make clear where you are in terms of the interaction or state

of the system.

 2.1.6.2 GLOBAL STRUCTURE – HIERARCHICAL ORGANIZATION

One way to organize a system is in some form of hierarchy. This is typically organized along

functional boundaries (that is, different kinds of things), but may be organized by roles, user type, or some

more esoteric breakdown such as modules in an educational system. The hierarchy links screens, pages or

states in logical groupings gives a high-level breakdown of some sort of messaging system. This sort of

hierarchy can be used purely to help during design, but can also be used to structure the actual system. For

example, this may reflect the menu structure of a PC application or the site structure on the web.

Figure 2.1 Application function hierarchy

 2.1.6.3 GLOBAL STRUCTURE – DIALOG

 In a pure information system or static website it may be sufficient to have a fully hierarchical structure,

perhaps with next/previous links between items in the same group. However, for any system that involves doing

things, constantly drilling down from one part of the hierarchy to another is very frustrating. Usually there are

ways of getting more quickly from place to place.

As well as these cross-links in hierarchies, when you get down to detailed interactions, such as editing or

deleting a record, there is obviously a flow of screens and commands that is not about hierarchy. In HCI the

word ‘dialog’ is used to refer to this pattern of interactions between the user and a system.

Figure 2.2 Network of Screens and states

Figure 2.2 shows a network diagram illustrating the main screens for adding or deleting a user from the

messaging system in Figure 2.1. The arrows show the general flow between the states. We can see that from the

main screen we can get to either the ‘remove user’ screen or the ‘add user’ screen. This is presumably by

selecting buttons or links, but the way these are shown we leave to detailed screen design. We can also see that

from the ‘add user’ screen the system always returns to the main screen, but after the ‘remove user’ screen there

is a further confirmation screen

2.1.6.4 WIDER STILL

 Each sits amongst other devices and applications and this in turn has to be reflected within our design has

several implications:

 Style issues We should normally conform to platform standards, such as positions for menus on a PC

application, to ensure consistency between applications. For example, on our proposed personal movie player

we should make use of standard fast-forward, play and pause icons.

 Functional issues On a PC application we need to be able to interact with files, read standard formats and be

able to handle cut and paste.

 Navigation issues We may need to support linkages between applications, for example allowing the

embedding of data from one application in another, or, in a mail system, being able to double click an

attachment icon and have the right application launched for the attachment.

 On the web we have the added difficulty that other sites and applications may include links that bypass our

‘home page’ and other pages and go direct into the heart of our site or web application. Also, when we link to

other sites, we have no control over them or the way their content may change over time.

2.1.7 SCREEN DESIGN AND LAYOUT

 A single screen image often has to present information clearly and also act as the locus for interacting with

the system.

2.1.7.1 TOOLS FOR LAYOUT

We have a number of visual tools available to help us suggest to the user appropriate ways to read and interact

with a screen or device.

Figure 2.3 Grouping related items in an order screen

Grouping and structure

 If things logically belong together, then we should normally physically group them together. This may

involve multiple levels of structure. For example, in Figure 2.3 we can see a potential design for an ordering

screen. Notice how the details for billing and delivery are grouped together spatially; also note how they are

separated from the list of items actually ordered by a line as well as spatially. This reflects the following

logical structure:

Order:

 Administrative information

 Billing details

 Delivery details

 Order information

 Order line 1

 Order line 2

 . . .

Order of groups and items

Figure 2.3 The screen seems to naturally suggest reading or filling in the billing details first, followed by the

delivery details, followed by the individual order items. This should normally match the order on screen. For

data entry forms or dialog boxes we should also set up the order in which the tab key moves between fields.

Decoration:

 Figure 2.3, we can see how the design uses boxes and a separating line to make the grouping clear.

Other decorative features like font style, and text or background colours can be used to emphasize

groupings.

Alignment:

 For users who read text from left to right, lists of text items should normally be aligned to the left. Numbers

should normally be aligned to the right (for integers) or at the decimal point. This is because the shape of the

column then gives an indication of magnitude – a sort of mini histogram. Items like names are particularly

difficult. Figure 2.4. It is clearly hard to look someone up if you only know their surname. To make it easy,

such lists should be laid out in columns as in (ii), or have forename and surname reversed as in (iii).

 Figure 2.4 Looking up surnames

Multiple column lists require more care. Text columns have to be wide enough for the largest item, which

means you can get large gaps between columns.

Figure 2.5 shows an example of this (i), and you can see how hard this makes it for your eye to scan across the

rows. There are several visual ways to deal with this including: (ii) ‘leaders’ – lines of dots linking the columns;

and (iii) using soft tone gray’s or colours behind rows or columns. This is also a time when it may be worth

breaking other alignment rules, perhaps right aligning some text items as in (iv). This last alternative might be a

good solution if you were frequently scanning the numbers and only occasionally scanning the names of items,

but not if you needed frequently to look up names.

Figure 2.5 Managing Multiple Columns

White space

 In typography the space between the letters is called the counter. In painting this is also important

and artists may focus as much on the space between the foreground elements such as figures and buildings as

on the elements themselves.

 Shape of the counter is the most important part of the composition of a painting and in calligraphy and

typography the balance of a word is determined by giving an even weight to the counters. If one ignores the

‘content’ of a screen and instead concentrates on the counter –the space between the elements – one can get

an overall feel for the layout. If elements that are supposed to be related look separate when you focus on the

counter, then something is wrong.

 Space can be used in several ways. Some of these are shown in Figure 2.6. The colored areas represent

continuous areas of text or graphics.

(i) We can see space used to separate blocks as you often see in gaps between paragraphs or space

between sections in a report. Space can also be used to create more complex structures.

(ii) There are clearly four main areas: ABC, D, E and F. Within one of these are three further areas, A, B

and C, which themselves are grouped as A on its own, followed by B and C together.

(iii) In Figure 2.6 , we can see space used to highlight. This is a technique used frequently in magazines to

highlight a quote or graphic.

Figure 2.6 using white space in layout

2.1.7.2 USER ACTION AND CONTROL

Entering information

 In each case the screen consists not only of information presented to the user, but also of places for the

user to enter information or select options. Alignment is still important. It is common to see the text entry boxes

aligned in a jagged fashion because the field names are of different length where right-justified text for the field

labels may be best or, alternatively, in a graphical interface a smaller font can be used for field labels and the

labels placed just above and to the left of the field they refer to.

 For both presenting and entering information a clear logical layout is important. The task analysis

techniques can help in determining how to group screen items and also the order in which users are likely to

want to read them or fill them in. Users are likely to read from left to right and top to bottom means that a screen

can be designed so that users encounter items in an appropriate order for the task at hand.

Affordances

 Affordances are not intrinsic, but depend on the background and culture of users. Most computer

users will click on an icon. This is not because they go around pushing pictures in art galleries, but because they

have learned that this is an affordance of such objects in a computer domain.

 Similarly, such experienced users may well double click if a single click has no effect, yet novices would

not even think of double clicking – after all, double clicking on most real buttons turns them off again.

2.1.7.3 APPROPRIATE APPEARANCE

Presenting information

 The way of presenting information on screen depends on the kind of information: text, numbers, maps,

tables; on the technology available to present it: character display, line drawing, graphics, virtual reality; and,

most important of all, on the purpose for which it is being used.

 Consider the window in Figure 2.7. The file listing is alphabetic, which is fine if we want to look up the

details of a particular file, but makes it very difficult to find recently updated files. Of course, if the list were

ordered by date then it would be difficult to find a particular file. Different purposes require different

representations. For more complex numerical data, we may be considering scatter graphs, histograms or 3D

surfaces; for hierarchical structures, we may consider outlines or organization diagrams.

Figure 2.7 Alphabetic file listing. Screen shot reprinted by permission from Apple Computer, Inc.

Aesthetics and utility

 An interface should be aesthetically pleasing. Indeed, good graphic design and attractive displays can

increase users’ satisfaction and thus improve productivity.

 For example, an industrial control panel will often be built up of the individual controls of several

subsystems, some designed by different teams, some bought in. The resulting inconsistency in appearance may

look a mess and suggest tidying up. Certainly some of this inconsistency may cause problems.

 The conflict between aesthetics and utility can also be seen in many ‘well-designed’ posters and

multimedia systems. In particular, the backdrop behind text must have low contrast in order to leave the text

readable; this is often not the case and graphic designers may include excessively complex and strong

backgrounds because they look good. The results are impressive, perhaps even award winning, but completely

unusable.

Making a mess of it: color and 3D

 Many monitors only support a limited range of primary colors .The increasing use of 3D effects in

interfaces has posed a whole new set of problems for text and numerical information. For presenting physical

information and certain sorts of graphs, text presented in perspective can be very difficult to read and the all too

common 3D pie chart is all but useless.

Localization / internationalization

 The process of making software suitable for different languages and cultures is called localization or

internationalization.

ITERATION AND PROTOTYPING

The result of evaluating the system will usually be a list of faults or problems and this is followed by a

redesign exercise, which is then prototyped, evaluated .

Figure 2.8 shows this process. The end point is when there are no more problems that can economically be

fixed. So iteration and prototyping are the universally accepted ‘best practice’ approach for interaction

design.

Figure 2.8 Role of prototyping

 You cannot iterate the design unless you know what must be done to improve it.

2.2 HCI IN THE SOFTWARE PROCESS:

• The software lifecycle- Software engineering is the discipline for understanding the software design

process, or life cycle. Designing for usability occurs at all stages of the life cycle, not as a single

isolated activity

The Software Life Cycle

 The software life cycle is an attempt to identify the activities that occur in software development. These

activities must then be ordered in time in any development project and appropriate techniques must be adopted

to carry them through.

 In the development of a software product, we consider two main parties: the customer who requires

the use of the product and the designer who must provide the product. Typically, the customer and the designer

are groups of people and some people can be both customer and designer. It is often important to distinguish

between the customer who is the client of the designing company and the customer who is the eventual user of

the system.

2.2.1 ACTIVITIES IN THE LIFE CYCLE

Requirements specification

Designer and customer try capture what the system is expected to provide can be expressed in natural language

or more precise languages, such as a task analysis would provide.

Architectural design

High-level description of how the system will provide the services required factor system into major

components of the system and how they are interrelated needs to satisfy both functional and non functional

requirements

Detailed design

Refinement of architectural components and interrelations to identify modules to be implemented

separately the refinement is governed by the non-functional requirements

Figure 2.9 The activities in the waterfall model of the software life cycle

Coding and unit testing

The detailed design for a component of the system should be in such a form that it is possible to implement it in

some executable programming language. After coding, the component can be tested to verify that it performs

correctly.

Integration and testing

Once enough components have been implemented and individually tested, they must be integrated as described

in the architectural design. Further testing is done to ensure correct behaviour and acceptable use of any

shared resources. It is also possible at this time to perform some acceptance testing with the customers to

ensure that the system meets their requirements. It is only after acceptance of the integrated system that the

product is finally released to the customer.

Maintenance

Maintenance involves the correction of errors in the system which is discovered after release and the revision of

the system services to satisfy requirements that were not realized during previous development. Therefore,

maintenance provides feedback to all of the other activities in the life cycle, as shown in Figure 2.10.

2.2.2 VALIDATION AND VERIFICATION

Verification of a design will often occur within a single life-cycle activity or between two adjacent activities.

For example, in the detailed design of a component

Figure 2.10 Feedback from maintenance activity to other design activities

The formality gap means that validation will always rely to some extent on subjective means of proof. We can

increase our confidence in the subjective proof by effective use of real-world experts in performing certain

validation chores. These experts will not necessarily have design expertise, so they may not understand the

Figure 2.11 The formality gap between the real world and structured design

design notations used. Therefore, it is important that the design notations narrow the formality gap, making clear

the claims that the expert can then validate. For interactive systems, the expert will have knowledge from a

cognitive or psychological domain, so the design specification must be readily interpretable from a

psychological perspective in order to validate it against interactive requirements of the system.

2.2.3 MANAGEMENT AND CONTRACTUAL ISSUES

The technical perspective of the life cycle is described in stages of activity, whereas the managerial

perspective is described in temporally bound phases. A phase is usually defined in terms of the documentation

taken as input to the phase and the documentation delivered as output from the phase. So the requirements

phase will take any marketing or conceptual development information, identifying potential customers, as input

and produce a requirements specification that must be agreed upon between customer and designer.

 So, It’s necessary to manage software development, but it has negative implications on the design process

as well. It is very difficult in the design of an interactive system to determine a priori what requirements to

impose on the system to maximize its usability.

2.2.4 INTERACTIVE SYSTEMS AND THE SOFTWARE LIFE CYCLE

 The life cycle for development presents the process of design in a somewhat pipeline order. In reality, even

for batch-processing systems, the actual design process is iterative, work in one design activity affecting work

in any other .We can represent this iterative relationship as in Figure 2.12, but that does not greatly enhance any

understanding of the design process for interactive systems.

Figure 2.12 Representing iteration in the waterfall model

The traditional software life cycle approach to design that is, we can structure our approach to design in

order to attain the goal. Designers do not find out all of the requirements for a system before they begin.

Figure 6.4 depicts how discovery in later activities can be reflected in iterations back to earlier stages.

2.2.5 USABILITY ENGINEERING

 Usability engineering is the inclusion of a usability specification, forming part of the requirements

specification that concentrates on features of the user–system interaction which contribute to the usability of

the product. Various attributes of the system are suggested for testing the usability. For each attribute, six

items are defined to form the usability specification of that attribute. Table 2.1 provides an example of a

usability specification for the design of a control panel for a video cassette recorder (VCR)

Table 2.1 Sample usability specification for undo with a VCR

Attribute: Backward recoverability

Measuring concept: Undo an erroneous programming sequence

Measuring method:

Number of explicit user actions to undo current

program

Now level: No current product allows such an undo

Worst case: As many actions as it takes to program in mistake

Planned level: A maximum of two explicit user actions

Best case: One explicit cancel action

Table 2.2 Criteria by which measuring method can be determined

 Time to complete a task

Per cent of task completed

Per cent of task completed per unit time

Ratio of successes to failures

Time spent in errors

Per cent or number of errors

Per cent or number of competitors better than it

Number of commands used

Frequency of help and documentation use

Per cent of favourable/unfavourable user comments

Number of repetitions of failed commands

Number of runs of successes and of failures

Number of times interface misleads the user

Number of good and bad features recalled by users

Number of available commands not invoked

Number of regressive behaviours

Number of users preferring your system

Number of times users need to work around a problem

Number of times the user is disrupted from a work task

Number of times user loses control of the system

Number of times user expresses frustration or satisfaction

Tables 2.2 and 2.3 provide a list of measurement criteria which can be used to determine the measuring

method for a usability attribute and the possible ways to set the worst/best case and planned/ now level targets.

Measurements such as those promoted by usability engineering are also called usability metrics.

Table 2.3 Possible ways to set measurement levels in a usability

 Set levels with respect to information on:

an existing system or previous version

 competitive systems

 carrying out the task without use of a computer system

 an absolute scale

 your own prototype

 user’s own earlier performance

 each component of a system separately

 a successive split of the difference between best and worst values observed in user

tests

Table 2.4 Examples of usability metrics from ISO 9241

Usability objective Effectiveness Efficiency Satisfaction

 measures measures measures

Suitability for the

task Percentage of goals Time to complete a Rating scale for

 achieved task satisfaction

Appropriate for Number of power Relative efficiency Rating scale for

trained users features used compared with an satisfaction with

 expert user power features

Learnability Percentage of Time to learn Rating scale for

 functions learned criterion ease of learning

Error tolerance Percentage of Time spent on Rating scale for

 errors corrected correcting errors error handling

 successfully

Table 2.4 gives examples of usability metrics categorized by their contribution towards the three categories of

usability: effectiveness, efficiency and satisfaction.

 2.2.5.1 PROBLEMS WITH USABILITY ENGINEERING

 The problem with usability metrics is measurement of very specific user actions in very specific

situations. When the designer knows what the actions and situation will be, then she can set goals for measured

observations. However, at early stages of design, designers do not have this information.

 2.2.6 ITERATIVE DESIGN AND PROTOTYPING

 Requirements for an interactive system cannot be completely specified from the beginning of the life

cycle. The only way to be sure about some features of the potential design is to build them and test them out on

real users. The design can then be modified to correct any false assumptions that were revealed in the testing.

The purpose of design process is to overcome the inherent problems of incomplete requirements specification

by cycling through several designs, incrementally improving upon the final product with each pass.

There are three main approaches to prototyping:

Throw-away The prototype is built and tested. The design knowledge gained from this exercise is used to build

the final product, but the actual prototype is discarded. Figure 2.13 depicts the procedure in using throw-away

prototypes to arrive at a final requirements specification in order for the rest of the design process to proceed.

Figure 2.13 Throw-away prototyping within requirements specification

Figure 2.14 Incremental prototyping within the life cycle

Incremental The final product is built as separate components, one at a time. There is one overall design for

the final system, but it is partitioned into independent and smaller components. The final product is then

released as a series of products, each subsequent release including one more component. This is depicted in

Figure 2.14.

Evolutionary Here the prototype is not discarded and serves as the basis for the next iteration of design. In

this case, the actual system is seen as evolving from a very limited initial version to its final release, as

depicted in Figure 2.15. Evolutionary prototyping also fits in well with the modifications which must be made

to the system that arise during the operation and maintenance activity in the life cycle.

Figure 2.15 Evolutionary prototyping throughout the life cycle

Time Building prototypes take time and, if it is a throw-away prototype, it can be seen as precious time taken

away from the real design task. So the value of proto-typing is only appreciated if it is fast, hence the use of

the term rapid prototyping.

Planning Most project managers do not have the experience necessary for adequately planning and costing a

design process which involves prototyping.

Non-functional features Non-functional features such as safety and reliability, and these are precisely the kinds

of features which are sacrificed in developing a prototype.

Contracts The design process is often governed by contractual agreements between customer and designer

which are affected by many of these managerial and technical issues.

2.2.6.1 TECHNIQUES FOR PROTOTYPING

 Storyboards

 Storyboards do not require much in terms of computing power to construct; in fact, they can be mocked

up without the aid of any computing resource. The origins of storyboards are in the film industry, where a series

of panels roughly depicts snapshots from an intended film sequence in order to get the idea across about the

eventual scene. Similarly, for interactive system design, the storyboards provide snapshots of the interface at

particular points in the interaction. Evaluating customer or user impressions of the storyboards can determine

relatively quickly if the design is heading in the right direction.

Limited functionality simulations

 Programming support for simulations means a designer can rapidly build graphical and textual interaction

objects and attach some behaviour to those objects, which mimics the system’s functionality. Once this

simulation is built, it can be evaluated and changed rapidly to reflect the results of the evaluation study with

various users.

High-level programming support

 HyperTalk is a special-purpose high-level programming language which makes it easy for the designer

to program certain features of an interactive system at the expense of other system features like speed of

response or space efficiency.

 HyperTalk and many similar languages allow the programmer to attach functional behaviour to the

specific interactions that the user will be able to do, such as position and click on the mouse over a button on the

screen.

2.2.6.2 WARNING ABOUT ITERATIVE DESIGN

 The ideal model of iterative design, in which a rapid prototype is designed, evaluated and modified until

the best possible design is achieved in the given project time.

There are two problems.

First, it is the case that design decisions made at the very beginning of the prototyping process are wrong and,

in practice, design inertia can be so great as never to overcome an initial bad decision.

The second problem is slightly more subtle, and serious. If, in the process of evaluation, a potential usability

problem is diagnosed, it is important to understand the reason for the problem and not just detect the symptom

2.2.7 DESIGN RATIONALE

 Design rationale is the information that explains why a computer system is the way it is, including its

structural or architectural description and its functional or behavioural description. Design rationale

relates to an activity of both reflection (doing design rationale) and documentation (creating a design rationale)

that occurs throughout the entire life cycle.

Benefits of design rationale

– communication throughout life cycle

– reuse of design knowledge across products

– enforces design discipline

– presents arguments for design trade-offs

– organizes potentially large design space

2.2.7.1 PROCESS-ORIENTED DESIGN RATIONALE

 A hierarchical structure to a design rationale is created. A root issue is identified which represents the

main problem or question that the argument is addressing. Various positions are put as resolutions for the

root issue, and these are depicted as descendants in the IBIS hierarchy directly connected to the root issue.

Each position is then supported or refuted by arguments, which modify the relationship between issue and

position. The hierarchy grows as secondary issues are raised which modify the root issue in some way. Each of

these secondary issues is in turn expanded by positions and arguments, further sub-issues, and so on.

Figure 2.16 The structure of a gIBIS design rationale

Figure 2.16 gives a representation of the gIBIS vocabulary. Issues, positions and arguments are nodes in the

graph and the connections between them are labelled to clarify the relationship between adjacent nodes.

2.2.7.2 DESIGN SPACE ANALYSIS

 The design space is initially structured by a set of questions representing the major issues of the design.

Since design space analysis is structure oriented. Questions, Options and Criteria (QOC) notation, are

characterized as design space analysis (see Figure 2.17).

In Figure 2.17 an option is assessed in terms of a criterion is linked with a solid line, whereas negative links

have a dashed line. The most favourable option is boxed in the diagram.

 The key to an effective design space analysis using the QOC notation is deciding the right questions to

use to structure the space and the correct criteria to judge the options.

Figure 2.17 the QOC notation

 Another structure-oriented technique, called Decision Representation Language (DRL), structures the

design space in a similar fashion to QOC, though its language is somewhat larger and it has a formal semantics.

The questions, options and criteria in DRL are given the names: decision problem, alternatives and goals. QOC

assessments are represented in DRL by a more complex language for relating goals to alternatives.

 The advantage of the formal semantics of DRL is that the design rationale can be used as a

computational mechanism to help manage the large volume of information.

 For example, DRL can track the dependencies between different decision problems, so that subsequent

changes to the design rationale for one decision problem can be automatically propagated to other dependent

problems.

 The major disadvantage is the increased overhead such an analysis warrants. More time must be taken

away from the design activity to do this separate documentation task. When time is scarce, these kinds of

overhead costs are the first to be trimmed.

2.2.7.3 PSYCHOLOGICAL DESIGN RATIONAL

 People use computers to accomplish some tasks in their particular work domain. When designing a new

interactive system, the designers take into account the tasks that users currently perform and any new ones that

they may want to perform. This task identification serves as part of the requirements for the new system, and

can be done through empirical observation of how people perform their work currently and presented through

informal language or a more formal task analysis language.

 When the new system is implemented, or becomes an artifact, further observation reveals that in addition

to the required tasks it was built to support, it also supports users in tasks that the designer never intended. Once

designers understand these new tasks, and the associated problems that arise between them and the previously

known tasks, the new task definitions can serve as requirements for future artifacts.

 The purpose of psychological design rationale is to support this natural task– artifact cycle of

design activity. The main emphasis is not to capture the designer’s intention in building the artifact. Rather,

psychological design rationale aims to make explicit the consequences of a design for the user, given an

understanding of what tasks he intends to perform.

2.3 DESIGN RULES:

principles

• abstract design rules

• low authority

• high generality

standards

• specific design rules

• high authority

• limited application

guidelines

• lower authority

• more general application

2.3.1 PRINCIPLES TO SUPPORT USABILITY

The most abstract design rules are general principles, which can be applied to the design of an interactive system

in order to promote its usability.

The principles of usability are divided into three main categories:

• Learnability – the ease with which new users can begin effective interaction and achieve maximal

performance.

• Flexibility – the multiplicity of ways in which the user and system exchange information.

• Robustness – the level of support provided to the user in determining successful achievement and

assessment of goals.

 2.3.1.1 LEARNABILITY

 Learnability concerns the features of the interactive system that allow novice users to understand

how to use it initially and then how to attain a maximal level of performance.

Predictability

 Predictability of an interactive system means that the user’s knowledge of the interaction history

is sufficient to determine the result of his future interaction with it. There are many degrees to which

predictability can be satisfied. The knowledge can be restricted to the presently perceivable information, so that

the user need not remember anything other than what is currently observable.

 The knowledge requirement can be increased to the limit where the user is actually forced to remember

what every previous keystroke was and what every previous screen display contained (and the order of each!) in

order to determine the consequences of the next input action.

Synthesizability

 Synthesis is the ability of the user to assess the effect of past operations on the current state. When

an operation changes some aspect of the internal state, it is important that the change is seen by the user. The

principle of honesty relates to the ability of the user interface to provide an observable and informative account

of such change. In the best of circumstances, this notification can come immediately, requiring no further

interaction initiated by the user. At the very least, the notification should appear eventually, after explicit user

directives to make the change observable.

 Comparison between command language interfaces and visual desktop interfaces for a file

management system.

 In a command language system, you would have to remember the destination directory and then ask to

see the contents of that directory in order to verify that the file has been moved (in fact, you would also have to

check that the file is no longer in its original directory to determine that it has been moved and not copied).

 In a visual desktop interface, a visual representation (or icon) of the file is dragged from its original

directory and placed in its destination directory where it remains visible (assuming the destination folder is

selected to reveal its contents). In this case, the user need not expend any more effort to assess the result of the

move operation. The visual desktop is immediately honest.

Familiarity

 For a new user, the familiarity of an interactive system measures the correlation between the user’s

existing knowledge and the knowledge required for effective interaction.

 For example, when word processors were originally introduced the analogy between the word

processor and a typewriter was intended to make the new technology more immediately accessible to those who

had little experience with the former but a lot of experience with the latter.

Generalizability

 We can apply generalization to situations in which the user wants to apply knowledge that helps

achieve one particular goal to another situation where the goal is in some way similar. Generalizability can be

seen as a form of consistency.

Consistency

 Consistency is probably the most widely mentioned principle in the literature on user interface design.

Consistency is not a single property of an interactive system that is either satisfied or not satisfied. Instead,

consistency must be applied relative to something. Thus we have consistency in command naming, or

consistency in command/argument invocation.

 Another consequence of consistency having to be defined with respect to some other feature of the

interaction is that many other principles can be ‘reduced’ to qualified instances of consistency. Hence,

familiarity can be considered as consistency with respect to past real-world experience, and generalizability as

consistency with respect to experience with the same system or set of applications on the same platform.

2.3.1.2 FLEXIBILITY

Dialog Initiative

 When considering the interaction between user and system as a dialog between partners, it is important

to consider which partner has the initiative in the conversation.

 The system can initiate all dialogs, in which case the user simply responds to requests for information.

We call this type of dialog system pre-emptive.

 For example, a modal dialog box prohibits the user from interacting with the system in any way that does

not direct input to the box.

 The user may be entirely free to initiate any action towards the system, in which case the dialog is user

pre-emptive.

Multi-threading

 Multi-threading of the user–system dialog allows for interaction to support more than one task at a time.

• Concurrent multi-threading allows simultaneous communication of information pertaining to

separate tasks.

• Interleaved multi-threading permits a temporal overlap between separate tasks, but stipulates that at

any given instant the dialog is restricted to a single task.

 Multi-modality of a dialog is related to multi-threading. Coutaz has characterized two dimensions of multi-

modal systems.

 First, we can consider how the separate modalities (or channels of communication) are combined to form a

single input or output expression. Multiple channels may be available, but any one expression may be restricted

to just one channel (keyboard or audio).

 As an example, to open a window the user can choose between a double click on an icon, a keyboard

shortcut, or saying ‘open window’.

 Consider chord sequences of input with a keyboard and mouse (pressing the shift key while a mouse button

is pressed, or saying ‘drop’ as you drag a file over the trash icon). We can also characterize a multi-modality

dialog depending on whether it allows concurrent or interleaved use of multiple modes.

 A windowing system naturally supports a multi-threaded dialog that is interleaved amongst a number of

overlapping tasks. Each window can represent a different task,

 For example text editing in one window, file management in another, a telephone directory in another and

electronic mail in yet another. A multi-modal dialog can allow for concurrent multi-threading.

Task Migratability

 Migratability concerns the transfer of control for execution of tasks between system and user. It should

be possible for the user or system to pass the control of a task over to the other or promote the task from a

completely internalized one to a shared and cooperative venture. Hence, a task that is internal to one can become

internal to the other or shared between the two partners.

 Spell-checking a paper is a good example of the need for task migratability.

Substitutivity

 Substitutivity requires that equivalent values can be substituted for each other.

 For example, in considering the form of an input expression to determine the margin for a letter, you

may want to enter the value in either inches or centimeters. You may also want to input the value explicitly (say

1.5 inches) or you may want to enter a calculation which produces the right input value (you know the width of

the text is 6.5 inches and the width of the paper is 8.5 inches and you want the left margin to be twice as large as

the right margin, so you enter 2/3 (8.5 − 6.5) inches).

 This input substitutivity contributes towards flexibility by allowing the user to choose whichever form best

suits the needs of the moment. By avoiding unnecessary calculations in the user’s head, substitutivity can

minimize user errors and cognitive effort.

 We can also consider substitutivity with respect to output, or the system’s rendering of state

information. Representation multiplicity illustrates flexibility for state rendering.

 For example, the temperature of a physical object over a period of time can be presented as a digital

thermometer if the actual numerical value is important or as a graph if it is only important to notice trends.

Equal opportunity blurs the distinction between input and output at the interface. The user has the choice of

what is input and what is output; in addition, output can be reused as input.

Customizability

 Customizability is the modifiability of the user interface by the user or the system. We distinguish

between the user-initiated and system-initiated modification, referring to the former as adaptability and the latter

as adaptivity.

2.3.1.3 ROBUSTNESS

Observability

 Observability allows the user to evaluate the internal state of the system by means of its perceivable

representation at the interface. It can be discussed through five other principles: browsability, defaults,

reachability, persistence and operation visibility.

• Browsability allows the user to explore the current internal state of the system via the limited view

provided at the interface. The availability of defaults can assist the user by passive recall (for example,

a suggested response to a question can be recognized as correct instead of recalled).

• Reachability refers to the possibility of navigation through the observable system states. There are

various levels of reachability that can be given precise mathematical definitions, but the main notion is

whether the user can navigate from any given state to any other state.

• Persistence deals with the duration of the effect of a communication act and the ability of the user to

make use of that effect. Vocal communication does not persist except in the memory of the receiver.

Visual communication can remain as an object which the user can subsequently manipulate long

after the act of presentation.

• Recoverability

 Recoverability is the ability to reach a desired goal after recognition of some error in a previous

 interaction. There are two directions in which recovery can occur, forward or backward.

➢ Forward error recovery involves the acceptance of the current state and negotiation from that

state towards the desired state. Forward error recovery may be the only possibility for recovery if

the effects of interaction are not revocable

➢ Backward error recovery is an attempt to undo the effects of previous interaction in order to

return to a prior state before proceeding. In a text editor, a mistyped keystroke might wipe out a

large section of text which you would want to retrieve by an equally simple undo button.

Recovery can be initiated by the system or by the user.

Responsiveness

 Responsiveness measures the rate of communication between the system and the user. Response

time is defined as the duration of time needed by the system to express state changes to the user. Instantaneous

means that the user perceives system reactions as immediate.

 Absolute response time is response time stability. Response time stability covers the invariance of the

duration for identical or similar computational resources. For example, pull-down menus are expected to pop up

instantaneously as soon as a mouse button is pressed.

Task Conformance

➢ Task completeness addresses the coverage issue.

➢ Task adequacy addresses the user’s understanding of the tasks.

 Task completeness refers to the level to which the system services can be mapped onto all of the user tasks.

2.3.3 STANDARDS

 Standards for interactive system design are usually set by national or international bodies to ensure

compliance with a set of design rules by a large community. Standards can apply specifically to either the

hardware or the software used to build the interactive system.

Underlying theory

➢ Hardware standards are based on an understanding of physiology or ergonomics/human factors, the

results of which are relatively well known, fixed and readily adaptable to design of the hardware.

➢ Software standards are based on theories from psychology or cognitive science, which are less well

formed, still evolving and not very easy to interpret in the language of software design.

➢ Hardware standards can directly relate to a hardware specification and still reflect the underlying

theory.

➢ Software standards would have to be more vaguely worded.

Examples of the language of standards for displays:

 Change Hardware is more difficult and expensive to change than software, which is usually designed to be

very flexible. Consequently, requirements changes for hardware do not occur as frequently as for software.

Since standards are also relatively stable, they are more suitable for hardware than software.

➢ Set by national or the UK Ministry of defense has published an Interim Defense Standard 00–25 on

Human Factors for Designers of Equipment, produced in 12 parts:

• Part 1 Introduction

• Part 2 Body Size

• Part 3 Body Strength and Stamina

• Part 4 Workplace Design

• Part 5 Stresses and Hazards

• Part 6 Vision and Lighting

• Part 7 Visual Displays

• Part 8 Auditory Information

• Part 9 Voice Communication

• Part 10 Controls

• Part 11 Design for Maintainability

• Part 12 Systems

In the beginning of that document, the following definition of usability is given:

• Usability The effectiveness, efficiency and satisfaction with which specified users achieve specified

goals in particular environments.

• Effectiveness The accuracy and completeness with which specified users can achieve specified goals in

particular environments.

• Efficiency The resources expended in relation to the accuracy and completeness of goals achieved.

• Satisfaction The comfort and acceptability of the work system to its users and other people affected by

its use.

2.3.4 GUIDELINES

 The majority of design rules for interactive systems are suggestive and more general guidelines.

 The more abstract the guideline, the more it resembles the principles. The more specific the guideline, the

more suited it is to detailed design. The guidelines can also be automated to some extent, providing a direct

means for translating detailed design specifications into actual implementation.

Example:

The basic categories of the Smith and Mosier guidelines are:

1. Data Entry

2. Data Display

3. Sequence Control

4. User Guidance

5. Data Transmission

6. Data Protection

Each of these categories is further broken down into more specific subcategories which contain the particular

guidelines.

Sample guidelines from Smith and Mosier [325]:

Table 2.5 Comparison of dialog styles mentioned in guidelines

 2.3.5 GOLDEN RULES AND HEURISTICS

A number of advocates of user-centered design have presented sets of ‘golden rules’ or heuristics.
There are many sets of heuristics, but the most well used are Nielsen’s ten heuristics, Shneiderman’s eight

golden rules and Norman’s seven principles. Nielsen’s ten heuristics will be discussed in evaluation technique

topic.

Schniedermann’s Eight Golden Rules of Interface Design

Shneiderman’s eight golden rules provide a convenient and succinct summary of the key principles of interface

design. They are intended to be used during design but can also be applied, like Nielsen’s heuristics, to the

evaluation of systems. Notice how they relate to the abstract principles discussed earlier.

• Strive for consistency in action sequences, layout, terminology, command use and so on.

• Enable frequent users to use shortcuts, such as abbreviations, special key sequences and macros, to

perform regular, familiar actions more quickly.
• Offer informative feedback for every user action, at a level appropriate to the magnitude of the action.
• Design dialogs to yield closure so that the user knows when they have completed a task.
• Offer error prevention and simple error handling so that, ideally, users are prevented from making

mistakes and, if they do, they are offered clear and informative instructions to enable them to recover.
• Permit easy reversal of actions in order to relieve anxiety and encourage exploration, since the user

knows that he can always return to the previous state.
• Support internal locus of control so that the user is in control of the system, which responds to his

actions.
• Reduce short-term memory load by keeping displays simple, consolidating multiple page displays and

providing time for learning action sequences.

Norman’s Seven Principles for Transforming Difficult Tasks into Simple Ones

 Norman summarizes user-centered design using the following seven principles:

• Use both knowledge in the world and knowledge in the head. People work better when the knowledge

they need to do a task is available externally either explicitly or through the constraints imposed by the

environment.

 But experts also need to be able to internalize regular tasks to increase their efficiency. So

systems should provide the necessary knowledge within the environment and their operation should be

transparent to support the user in building an appropriate mental model of what is going on.
• Simplify the structure of tasks. Tasks need to be simple in order to avoid complex problem solving and

excessive memory load. There are a number of ways to simplify the structure of tasks. One is to

provide mental aids to help the user keep track of stages in a more complex task.

• Make things visible. bridge the gulfs of execution and evaluation. The interface should make clear

what the system can do and how this is achieved, and should enable the user to see clearly the effect of

their actions on the system.

• Get the mappings right. User intentions should map clearly onto system controls. User actions should

map clearly onto system events. So it should be clear what does what and by how much. Controls,

sliders and dials should reflect the task – so a small movement has a small effect and a large movement

a large effect.

• Exploit the power of constraints both natural and artificial. Constraints are things in the world that

make it impossible to do anything but the correct action in the correct way. Example is a jigsaw

puzzle, where the pieces only fit together in one way. Here the physical constraints of the design guide

the user to complete the task.

• Design for error. To err is human, so anticipate the errors the user could make and design recovery

into the system.

• When all else fails, standardize. If there are no natural mappings then arbitrary mappings should be

standardized so that users only have to learn them once. It is this standardization principle that enables

drivers to get into a new car and drive it with very little difficulty – key controls are standardized.

Occasionally one might switch on the indicator lights instead of the windscreen wipers, but the critical

controls (accelerator, brake, clutch, steering) are always the same.

Norman’s seven principles provide a useful summary of his user-centered design philosophy.

2.4 EVALUATION TECHNIQUES:

2.4.1 WHAT IS EVALUATION?

 Evaluation is assessing the system designs and test systems to ensure that they actually behave as

expected and meet user requirements. This is the role of evaluation.

• It should occur throughout the design life cycle and the results should be feedback into modification to

the design.

• It can be considered under two broad headings:

i. Expert analysis

ii. User Participation

2.4.2 GOALS OF EVALUATION

 Evaluation has three main goals:

• To assess the extent and accessibility of the system’s functionality

• To assess users’ experience of the interaction

• To identify any specific problems with the system.

2.4.3 EVALUATION THROUGH EXPERT ANALYSIS

A number of methods have been proposed to evaluate interactive systems through expert analysis.

These depend upon the designer, or a human factors expert, taking the design and assessing the impact that it

will have upon a typical user.

 The basic intention is to identify any areas that are likely to cause difficulties because they violate

known cognitive principles, or ignore accepted empirical results. These methods can be used at any stage in the

development process from a design specification, through story boards and prototypes, to full implementations,

making them flexible evaluation approaches.

 They are also relatively cheap, since they do not assess actual use of the system, only whether or not a

system upholds accepted usability principles.

Four approaches to expert analysis are:

1. Cognitive Walkthrough

2. Heuristic Evaluation

3. the use of models

4. use of previous work

 2.4.3.1 COGNITIVE WALKTHROUGH

 The origin of cognitive walk through is the code walkthrough familiar in software engineering.

The main focus of the cognitive walkthrough is to establish how easy a system is to learn that is learning

through exploration. Studies show many users prefer to learn how to use a system by exploring its functionality

hands on, and not after sufficient training or examination of user’s manual. So the checks that are made during

the walkthrough ask questions that address exploratory learning.

For this evaluators go through each step in the task and provide a story about why that step is or is not good for

a new user. To do a cognitive walkthrough we need four things:

• A specification or prototype of the system. It doesn’t have to be complete, but it should be fairly

detailed such as the location and wording for a menu can make a big difference.

• A description of the task the user is to perform on the system. This should be a representation task that

most users will want to do.

• A complete, written list of the actions needed to complete the task with the proposed system.

• An indication of who the users are and what kind of experience and knowledge the evaluators can

assume about them.

Evaluators tell a believable story about the following four questions for each step in the action sequence.

i. Is the effect of the action the same as the user’s goal at that point? Example: If the effect of the action

is to save a document, is ‘saving a document’ what the user wants to do?

ii. Will users see that the action is available? Example: Will users see the button or menu item that is used

to produce the action?

iii. Once users have found the correct action, will they know it is the one they need? Example: While the

previous question was about the visibility of the action, this one is about whether its meaning and effect

is clear.

iv. After the action is taken, will users understand the feedback they get? Example: Will the feedback

given to user be sufficient confirmation of what has actually happened?

It is important to document the cognitive walkthrough to keep a record of what is good and what needs

improvement in the design. For this, standard evaluation forms are used. The cover form and other standard

forms will have the above evaluation questions and corresponding answers as well as date and time of

walkthrough, and names of evaluators.

Any negative answer should be documented on a separate usability problem report sheet. This sheet contains

version of the system, date, evaluators and a detailed description of the usability problem. It will indicate the

severity of the problem to the users. This information helps designers to decide priorities for correcting the

design, since it is always not possible to fix every problem.

2.4.3.2 HEURISTIC EVALUATION:

 A heuristic is a guideline or general principle or rule of thumb that can guide a design decision or be

used to critique a decision that has already been made.

 It is useful for evaluating early design but also on prototypes, storyboards and fully functioning systems.

It is flexible, relatively cheap approach. So it is called as discount usability technique.

 Evaluators assess the severity of each usability problem, based on 4 factors:

• how common is the problem.

• how easy is it for the user to overcome.

• how will it be a one-off problem or a persistent one.

• how seriously will the problem be perceived? These can be combined into a overall rating on a scale of 0-4:

 0 = I don’t agree that this is a usability problem at all

 1 = Cosmetic problem only: need not be fixed unless extra time is available on project

 2 = Minor usability problem: fixing this should be given low priority

 3 = Major usability problem: important to fix, so should be given high priority

 4 = Usability catastrophe imperative to fix this before product can be released

Nielsen’s ten heuristics are:

1. Visibility of system status Always keep users informed about what is going on, through appropriate feedback

within reasonable time. For example, if a system operation will take some time, give an indication of how long

and how much is complete.

2. Match between system and the real world The system should speak the user’s language, with words, phrases

and concepts familiar to the user, rather than system-oriented terms. Follow real-world conventions, making

information appear in natural and logical order.

3. User control and freedom Users often choose system functions by mistake and need a clearly marked

‘emergency exit’ to leave the unwanted state without having to go through an extended dialog. Support undo

and redo.

4. Consistency and standards Users should not have to wonder whether words, situations or actions mean the

same thing in different contexts. Follow platform conventions and accepted standards.

5. Error prevention Make it difficult to make errors. Even better than good error messages is a careful design

that prevents a problem from occurring in the first place.

6. Recognition rather than recall Make objects, actions and options visible. The user should not have to

remember information from one part of the dialog to another. Instructions for use of the system should be visible

or easily retrievable whenever appropriate.

7. Flexibility and efficiency of use Allow users to tailor frequent actions. Accelerators – unseen by the novice

user – may often speed up the interaction for the expert user to such an extent that the system can cater to both

inexperienced and experienced users.

8. Aesthetic and minimalist design Dialog should not contain information that is irrelevant or rarely needed.

9. Help users recognize, diagnose and recover from errors Error messages should be expressed in plain

language (no codes), precisely indicate the problem, and constructively suggest a solution.

10. Help and documentation Few systems can be used with no instructions so it may be necessary to provide

help and documentation. Any such information should be easy to search, focused on the user’s task, list concrete

steps to be carried out, and not be too large.

 Once each evaluator has completed their separate assessment, all of the problems are collected and the

mean severity ratings calculated. The design team will then determine the ones that are the most important and

will receive attention first.

2.4.3.3 MODEL-BASED EVALUATION

 Certain cognitive and design models provide a means of combining design specification and

evaluation into the same framework.

 For example, the GOMS (goals, operators, methods and selection) model predicts user performance

with a particular interface and can be used to filter particular design options. Similarly, lower-level modeling

techniques such as the keystroke-level model pro-vide predictions of the time users will take to perform low-

level physical tasks.

 Design methodologies such as design rationale have a role to play in evaluation at the design stage.

Dialog models can also be used to evaluate dialog sequences for problems, such as unreachable states,

circular dialogs and complexity. Models such as state transition networks are useful for evaluating dialog

designs prior to implementation.

 2.4.3.4 USING PREVIOUS STUDIES IN EVALUATION

A final approach to expert evaluation exploits inheritance, using previous results as evidence to support (or

refute) aspects of the design.

2.4.4 EVALUATION THROUGH USER PARTICIPATION

User participation in evaluation tends to occur in the later stages of development when there is at least a working

prototype of the system.

2.4.4.1 STYLES OF EVALUATION

There are two distinct evaluation styles: those performed under laboratory conditions and those

conducted in the work environment or ‘in the field’.

Laboratory Studies

 In the first type of evaluation studies, users are taken out of their normal work environment to take part

in controlled tests, often in a specialist usability laboratory. This approach has a number of benefits and

disadvantages.

 A well-equipped usability laboratory may contain sophisticated audio/visual recording and analysis

facilities, two-way mirrors, instrumented computers and the like, which cannot be replicated in the work

environment. In addition, the participant operates in an interruption-free environment. However, the lack of

context. There are, however, some situations where laboratory observation is the only option.

 For example, if the system is to be located in a dangerous or remote location, such as a space station.

Also some very constrained single-user tasks may be adequately performed in a laboratory. We may want to

compare alternative designs within a con-trolled context. For these types of evaluation, laboratory studies are

appropriate.

Field Studies

 The second type of evaluation takes the designer or evaluator out into the user’s work environment in

order to observe the system in action. Again this approach has its pros and cons.

High levels of ambient noise, greater levels of movement and constant interruptions, such as phone calls, all

make field observation difficult. However, the very ‘open’ nature of the situation means that you will observe

interactions between systems and between individuals that would have been missed in a laboratory study. The

context is retained and you are seeing the user in his ‘natural environment’. In addition, some activities, such as

those taking days or months, are impossible to study in the laboratory

2.4.4.2 EMPIRICAL METHODS: EXPERIMENTAL EVALUATION

 One of the most powerful methods of evaluating a design or an aspect of a design is to use a controlled

experiment. This provides empirical evidence to support a particular claim or hypothesis. It can be used to study

a wide range of different issues at different levels of detail.

Factors of Experimental design

• Participants: In evaluation experiments, participants should be chosen to match the expected user

population as closely as possible. If participants are not actual users, they should be chosen to be of a

similar age and level of education as the intended user group.

• Variables: Experiments manipulate and measure variables under controlled conditions, in order to test the

hypothesis. There are two main types of variable: those that are ‘manipulated’ or changed (known as the

independent variables) and those that are measured (the dependent variables).

• Hypotheses: A hypothesis is a prediction of the outcome of an experiment. It is framed in terms of the

independent and dependent variables, stating that a variation in the independent variable will cause a

difference in the dependent variable. The aim of the experiment is to show that this prediction is correct.

• Experimental design: In order to produce reliable and generalizable results, an experiment must be

carefully designed.

• Statistical measures: The first two rules of statistical analysis are to look at the data and to save the data.

Our choice of statistical analysis depends on the type of data and the questions we want to answer. It is

worth having important results checked by an experienced statistician, but in many situations standard tests

can be used.

 Variables can be classified as either discrete variables or continuous variables.

• A discrete variable can only take a finite number of values or levels. for example, a screen

color that can be red, green or blue.

• A continuous variable can take any value (although it may have an upper or lower limit), for

example a person’s height or the time taken to complete a task. A special case of continuous data is

when they are positive, for example a response time cannot be negative

The dependent variable is the measured one and subject to random experimental variation. In the case when

this variable is continuous, the random variation may take a special form. If the form of the data follows a

known distribution then special and more powerful statistical tests can be used. Such tests are called

parametric tests and the most common of these are used when the variation follows the normal distribution.

This means that if we plot a histogram of the random errors, they will form the well-known bell-shaped graph

(Figure 9.2). Many of these tests are fairly robust, that is they give reasonable results even when the data are

not precisely normal. This means that you need not worry too much about checking normality during early

analysis.

There are ways of checking whether data are really normal. However, as a general rule, if data can be seen

as the sum or average of many small independent effects they are likely to be normal.

For example, the time taken to complete a complex task is the sum of the times of all the minor tasks of

which it is composed.

When we cannot assume that data are normally distributed, we must often resort to non-parametric tests.

These are statistical tests that make no assumptions about the particular distribution and are usually based

purely on the ranking of the data.
A third sort of test is the contingency table, where we classify data by several discrete attributes and then

count the number of data items with each attribute combination.

 Table 9.1 lists some of the standard tests categorized by the form of independent and dependent variables

(discrete/continuous/normal). Normality is not an issue for the independent variable, but a special case is when

it is discrete with only two values, for example comparing two systems. We cannot describe all the techniques

here; for this you should use a standard statistics text, such as one of those recommended in the reading list.

The table is only intended to guide you in your choice of test.
An extensive and accurate analysis is no use if it answers the wrong question.

Examples of questions one might ask about the data are as follows:

1. Is there a difference?

2. How big is the difference?

3. How accurate is the estimate?

An example: Evaluating icon designs

 Imagine you are designing a new interface to a document-processing package, which is to use icons for

presentation. You are considering two styles of icon design and you wish to know which design will be easier

for users to remember. One set of icons uses naturalistic images (based on a paper document metaphor), the

other uses abstract images (see Figure 9.3). How might you design an experiment to help you decide which style

to use?

 The first thing you need to do is form a hypothesis: what do you consider to be the likely outcome? In this

case, you might expect the natural icons to be easier to recall since they are more familiar to users. We can

therefore form the following hypothesis:

Users will remember the natural icons more easily than the abstract ones.

The null hypothesis in this case is that there will be no difference between recall of the icon types.

This hypothesis clearly identifies the independent variable for our experiment: we are varying the style of icon.

The independent variable has two levels: natural and abstract. However, when we come to consider the

dependent variable, things are not so obvious. We have expressed our hypothesis in terms of users being able

to remember more easily. How can we measure this? First we need to clarify exactly what we mean by the

phrase more easily: are we concerned with the user’s performance in terms of accurate recall or in terms of

speed.

We need to control the experiment so that any differences we observe are clearly attributable to the

independent variable, and so that our measurements of the dependent variables are comparable. To do this,

we provide an interface that is identical in every way except for the icon design, and a selection task that can be

repeated for each condition.

The latter could be either a naturalistic task (such as producing a document) or a more artificial task

in which the user has to select the appropriate icon to a given prompt.

The second task has the advantage that it is more controlled (there is little variation between users as

to how they will perform the task) and it can be varied to avoid transfer of learning. Before performing the

selection task, the users will be allowed to learn the icons in controlled conditions: for example, they may be

given a fixed amount of time to learn the icon meanings.

 In order to avoid learning effects from icon position, the placing of icons in the block can be randomly

varied on each presentation. Each user performs the selection task under each condition. In order to avoid

transfer of learning, the users are divided into two groups with each group taking a different starting condition.

For each user, we measure the time taken to complete the task and the number of errors made.

Studies of group of users

 Experiments to evaluate elements of group systems bring additional problems. Given the complexities

of human–human communication and group working, it is hardly surprising that experimental studies of groups

and of groupware are more difficult than the corresponding single-user experiments.

Example: evaluating a shared application with video connections between the participants and consider some of

the problems we will encounter.

• The participant groups To organize, say, 10 experiments of a single-user system require 10

participants. For an experiment involving groups of three, we will, of course, need 30 participants for

the same number of experiments.

 In addition, experiments in group working are often longer than the single-user equivalents

as we must allow time for the group to ‘settle down’ and some rapport to develop. This all means more

disruption for participants and possibly more expense payments.

• The experimental task Choosing a suitable task is also difficult. We may want to test a variety of

different task types: creative, structured, information passing, and so on.

• Data gathering Even in a single-user experiment we may well use several video cameras as well as

direct logging of the application. In a group setting this is replicated for each participant. So for a three-

person group, we are trying to synchronize the recording of six or more video sources and three

keystroke logs. To compound matters, these may be spread over different offices, or even different

sites. The technical problems are clearly enormous.

• Field studies with groups There are, of course, problems with taking groups of users and putting them

in an experimental situation. If the groups are randomly mixed, then we are effectively examining the

process of group formation, rather than that of a normal working group. Even where a pre-existent

group is used, excluding people from their normal working environment can completely alter their

working patterns.

2.4.4.3 OBSERVATIONAL TECHNIQUES

The techniques used to evaluate systems by observing user behavior.

i. Think aloud and cooperative evaluation - Think aloud is a form of observation where the user is asked to talk

through what he is doing as he is being observed; for example, describing what he believes is happening, why

he takes an action, what he is trying to do.

ii. Protocol analysis – Paper and pencil, Audio recording, Video recording, Computer logging and user

notebooks.

iii. Automatic protocol analysis tools - Analyzing protocols, whether video, audio or system logs, is time

consuming and tedious by hand. It is made harder if there is more than one stream of data to synchronize. One

solution to this problem is to provide automatic analysis tools to support the task. These offer a means of editing

and annotating video, audio and system logs and synchronizing these for detailed analysis. Example:

EVA (Experimental Video Annotator) is a system that runs on a multimedia work-station with a direct link to

a video recorder. The evaluator can devise a set of buttons indicating different events. These may include

timestamps and snapshots, as well as notes of expected events and errors. The buttons are used within a

recording session by the evaluator to annotate the video with notes.

 During the session the user works at a workstation and is recorded, using video and perhaps audio and

system logging as well. The evaluator uses the multimedia workstation running EVA. On the screen are the live

video record and a view of the user’s screen. The evaluator can use the buttons to tag interesting events as they

occur and can record additional notes using a text editor. After the session, the evaluator can ask to review the

tagged segments and can then use these and standard video controls to search the information.

iv. Post-task walkthroughs - Often data obtained via direct observation lack interpretation. A walkthrough

attempts to alleviate the problem, by reflecting the participants’ actions back to them after the event.

2.4.4.4 QUERY TECHNIQUES - Another set of evaluation techniques relies on asking the user about the

interface directly. Query techniques can be useful in eliciting detail of the user’s view of a system.

i. Interviews - Interviewing users about their experience with an interactive system provides a direct and

structured way of gathering information.

 Interviews have the advantages that the level of questioning can be varied to suit the context and that the

evaluator can probe the user more deeply on interesting issues as they arise. An interview will usually follow a

top-down approach, starting with a general question about a task and progressing to more leading questions

(often of the form ‘why?’ or ‘what if?’) to elaborate aspects of the user’s response.

ii. Questionnaires - An alternative method of querying the user is to administer a questionnaire. This is clearly

less flexible than the interview technique, since questions are fixed in advance, and it is likely that the questions

will be less probing.

Styles of Question:

General These are questions that help to establish the background of the user and his place within the user

population. They include questions about age, sex, occupation, place of residence, and so on. They may also

include questions on previous experience with computers, which may be phrased as open-ended, multi-choice or

scalar questions.

Open-ended These ask the user to provide his own unprompted opinion on a question.

Scalar These ask the user to judge a specific statement on a numeric scale, usually corresponding to a measure

of agreement or disagreement with the statement.

 For example, It is easy to recover from mistakes.

 Disagree 1 2 3 4 5 Agree

Multi-choice Here the respondent is offered a choice of explicit responses, and may be asked to select only one

of these, or as many as apply. For example,

How do you most often get help with the system (tick one)?

Online manual q

Contextual help system q

Command prompt q

Ask a colleague q

Ranked These place an ordering on items in a list and are useful to indicate a user’s preferences.

For example, Please rank the usefulness of these methods of issuing a command (1 most useful,

2 next, 0 if not used).

Menu selection q

Command line q

Control key accelerator q

2.4.4.5 EVALUATION THROUGH MONITORING PHYSIOLOGICAL RESPONSES

 It is called objective usability testing, ways of monitoring physiological aspects of computer use.

Potentially this will allow us not only to see more clearly exactly what users do when they interact with

computers, but also to measure how they feel.

The two areas receiving the most attention to date are eye tracking and physiological measurement.

i. Eye tracking for usability evaluation

Eye tracking has been possible for many years, but recent improvements in hard-ware and software have made it

more viable as an approach to measuring usability.There are many possible measurements related to usability

evaluation including:

Number of fixations The more fixations the less efficient the search strategy.

Fixation duration Longer fixations may indicate difficulty with a display.

Scan path indicating areas of interest, search strategy and cognitive load.

Eye tracking for usability is still very new and equipment is prohibitively expensive for everyday use.

ii. Physiological Measurements

 Emotional response is closely tied to physiological changes. These include changes in heart rate,

breathing and skin secretions. Measuring these physiological responses may therefore be useful in determining a

user’s emotional response to an interface.

Physiological measurement involves attaching various probes and sensors to the user. These measure a

number of factors:

• Heart activity, indicated by blood pressure, volume and pulse. These may respond to stress or anger.

• Activity of the sweat glands, indicated by skin resistance or galvanic skin response (GSR). These are

thought to indicate levels of arousal and mental effort.

• Electrical activity in muscle, measured by the electromyogram (EMG). These appear to reflect

involvement in a task.

• Electrical activity in the brain, measured by the electroencephalogram (EEG). These are associated with

decision making, attention and motivation.

2.4.5 CHOOSING AN EVALUATION METHOD

2.4.5.1 FACTORS DISTINGUISHING EVALUATION TECHNIQUES

- the stage in the cycle at which the evaluation is carried out (Design Vs Implementation)

- the style of evaluation (Laboratory Vs Field Studies)

- the level of subjectivity or objectivity of the technique (Subjective Vs Objective)

- the type of measures provided (Qualitative Vs Quantitative measures)

- the information provided

- the immediacy of the response

- the level of interference implied (Intrusiveness)

- the resources required.

2.4.5.2 A CLASSIFICATION OF EVALUATION TECHNIQUES

Using the factors discussed in the previous section we can classify the evaluation techniques.

2.5 UNIVERSAL DESIGN:

Universal design is the process of designing products so that they can be used by as many people as possible in

as many situations as possible.

2.5.1 UNIVERSAL DESIGN PRINCIPLES

The principles give us a framework in which to develop universal designs.

• Principle one is equitable use: the design is useful to people with a range of abilities and appealing to

all. No user is excluded or stigmatized.
• Principle two is flexibility in use: the design allows for a range of ability and preference, through

choice of methods of use and adaptively to the user’s pace, precision and custom.
• Principle three is that the system be simple and intuitive to use, regardless of the knowledge,

experience, language or level of concentration of the user. The design needs to support the user’s

expectations and accommodate different language and literacy skills. It should not be unnecessarily

complex and should be organized to facilitate access to the most important areas.
• Principle four is perceptible information: the design should provide effective communication of

information regardless of the environmental conditions or the user’s abilities.

 Information should be represented in different forms or modes (e.g. graphic, verbal, text, touch).

Presentation should support the range of devices and techniques used to access information by people

with different sensory abilities.
• Principle five is tolerance for error: minimizing the impact and damage caused by mistakes or

unintended behavior. Potentially dangerous situations should be removed or made hard to reach.

Potential hazards should be shielded by warnings. Systems should fail safe from the user’s perspective

and users should be supported in tasks that require concentration.
• Principle six is low physical effort: systems should be designed to be comfortable to use, minimizing

physical effort and fatigue. The physical design of the system should allow the user to maintain a

natural posture with reasonable operating effort. Repetitive or sustained actions should be avoided.

• Principle seven requires size and space for approach and use: the placement of the system should be

such that it can be reached and used by any user regardless of body size, posture or mobility.

 All physical components should be comfortably reachable by seated or standing users. Systems

should allow for variation in hand size and provide enough room for assistive devices to be used.

2.5.2 MULTI-MODAL INTERACTION

 Providing access to information through more than one mode of interaction is an important principle of

universal design. Such design relies on multi-modal interaction. Since our interaction with the world is

improved by multi-sensory input, it makes sense that interactive systems that utilize more than one sensory

channel will also provide a richer interactive experience.

 In addition, such multi-sensory or multi-modal systems support the principle of redundancy required

for universal design, enabling users to access the system using the mode of interaction that is most appropriate

to their abilities.

2.5.2.1 SOUND IN THE INTERFACE

 Sound is an important contributor to usability. The dual presentation of information through sound

and vision supports universal design, by enabling access for users with visual and hearing impairments

respectively. It also enables information to be accessed in poorly lit or noisy environments. Sound can convey

transient information and does not take up screen space, making it potentially useful for mobile applications.

 1. Speech in the interface – Language is rich and complex. Human beings have great and natural mastery

of speech.

 i. Structure of Speech - If we are fully to appreciate the problems involved with the computer-based

recognition and generation of speech. The English language is made up of 40 phonemes, which are the atomic

elements of speech. Each phoneme represents a distinct sound, there being 24 consonants and 16 vowel sounds.

Language is more than simple sounds.

 ii. Speech recognition - There have been many attempts at developing speech recognition systems, but,

although commercial systems are now commonly and cheaply available, their success is still limited to single-

user systems that require considerable training.

 Different people to speak differently: accent, idiom, stress, volume, etc. The syntax of

semantically similar sentences may vary. Background noises can interfere. Example: Phonetic Typewriter –

Developed for Finnish (a phonetic language, written as it is said)

 iii. Speech synthesis - Most speech synthesizers can deliver a degree of prosody, but in order to decide

what intonation to give to a word, the system must have an understanding of the domain.

 So an effective automatic reader would also need to be able to understand natural language, which is

difficult. However, for ‘canned’ messages and responses, the prosody can be hand coded yielding much more

acceptable speech. Other problems:

 Synthesized speech also brings other problems. Being transient, spoken output cannot be reviewed or

browsed easily. It is intrusive, requiring either an increase in noise in the office environment or the use of

headphones, either of which may be too large a price to pay for the benefits the system may offer.
 There are some application areas in which speech synthesis has been successful. For users who are

blind or partially sighted, synthesized speech offers an output medium which they can access.
 Speech synthesis is also useful as a communication tool to assist people with physical disabilities that

affect their speech.

 iv Uninterpreted Speech - Speech does not have to be recognized by a computer to be useful in the

interface. Fixed pre-recorded messages can be used to supplement or replace visual information. Recordings

have natural human prosody and pronunciation, although quality is sometimes low.
 Recordings of users’ speech can also be very useful, especially in collaborative applications, for

example many readers will have used voicemail systems. Also, recordings can be attached to other artifacts as

audio annotations in order to communicate with others or to remind oneself at a later time. For example, audio

annotations can be attached to Microsoft Word documents.
 2. Non-speech Sound – Non-speech sound can be used in a number of ways in interactive systems. It is

often used to provide transitory information, such as indications of network or system changes, or of errors. It

can also be used to provide status information on background processes, since we are able to ignore continuous

sounds but still respond to changes in those sounds

 i. Auditory icons – Use natural sounds to represent different types of object or action. Natural

sounds have associated semantics which can be mapped onto similar meanings in the interaction. Example:

Throwing something away.

 3. Earcons - An alternative to using natural sounds is to devise synthetic sounds. Earcons use

structured combinations of notes, called motives, to represent actions and objects (see Figure 10.2). These vary

according to rhythm, pitch, timbre, scale and volume.

 There are two types of combination of earcon.

➢ Compound earcons combine different motives to build up a specific action, for example combining

the motives for ‘create’ and ‘file’.

➢ Family earcons represent compound earcons of similar types. As an example, operating system

errors and syntax errors would be in the ‘error’ family.

Earcons provide a structured approach to designing sound for the interface. The most important

element in distinguishing different sounds is timbre, the characteristic quality of the sound produced

by different instruments and voices. Other factors such as pitch, rhythm and register should be used

to supplement timbre in creating distinctive sets of musical earcons.

2.5.2.2 TOUCH IN THE INTERFACE

 The use of touch in the interface is known as haptic interaction. Haptics is a generic term relating to

touch, but it can be divided into two areas:

 cutaneous perception is concerned with tactile sensations through the skin.

 Kinesthetic is the perception of movement and position. Both are useful in interaction but they

require different technologies.

One example of a tactile device is an electronic – or soft – braille display. Braille displays are made up

of a number of cells (typically between 20 and 80), each containing six or eight electronically controlled pins

that move up and down to produce braille representations of characters displayed on the screen. Whereas printed

braille normally has six dots per cell, electronic braille typically has eight pins, with the extra two representing

additional information about that cell, such as cursor position and character case.

The other main type of haptic device is the force feedback device, which provides kinesthetic

information back to the user, allowing him to feel resistance, textures, friction and so on.

 2.5.2.3 HANDWRITING RECOGNITION

 Like speech, we consider handwriting to be a very natural form of communication. The idea of being able to

interpret handwritten input is very appealing, and hand-writing appears to offer both textual and graphical input

using the same tools. There are problems associated with the use of handwriting as an input medium.

 i Technology for Handwriting Recognition - The major piece of technology used to capture

handwriting is the digitizing tablet. . Free-flowing strokes made with a pen are transformed into a series of

coordinates, approximately one every 1/50th of a second (or at the sampling rate of the digitizer). Rapid

movements produce widely spaced dots, in comparison with slow movements: this introduces immediate errors

into the information, since the detail of the stroke between dots is lost, as is the pressure information. Digitizing

tablets have been refined by incorporating a thin screen on top to display the information, producing

electronic paper.

 ii Recognizing handwriting - The variation between the handwriting of individuals is large (see

Figure 10.4); moreover, the handwriting of a single person varies from day to day, and evolves over the years.

when letters are individually written, with a small separation, the success of systems becomes more

respectable, although they have to be trained to recognize the characteristics of the different users. If tested on

an untrained person, success is limited again. Many of the solutions that are being attempted in speech

recognition are also being tried in handwriting recognition systems, such as whole-word recognition, the use of

context to disambiguate characters, and neural net-works, which learn by example.

 2.5.2.4 GESTURE RECOGNITION

 Gesture is a component of human–computer interaction that has become the subject of attention in multi-

modal systems. Being able to control the computer with certain movements of the hand would be advantageous

in many situations where there is no possibility of typing, or when other senses are fully occupied. It could also

support communication for people who have hearing loss, if signing could be ‘translated’ into speech or vice

versa. But, like speech, gesture is user dependent, subject to variation and co-articulation.

 The technology for capturing gestures is expensive, using either computer vision or a special data glove.

The data glove provides easier access to highly accurate information, but is a relatively intrusive technology,

requiring the user to wear the special Lycra glove. The interpretation of the sampled data is very difficult, since

segmenting the gestures causes problems.

2.5.3 DESIGNING FOR DIVERSITY

 Interfaces are usually designed to cater for the ‘average’ user, but unfortunately this may exclude

people who are not ‘average’. people are diverse and there are many factors that must be taken into account if

we are to come close to universal design.

 2.5.3.1 DESIGNING FOR USERS WITH DISABILITY

 It is estimated that at least 10% of the population of every country has a disability that will affect

interaction with computers. Employers and manufacturers of computing equipment have not only a moral

responsibility to provide accessible products, but often also a legal responsibility. In many countries, legislation

now demands that the workplace must be designed to be accessible or at least adaptable to all – the design of

software and hardware should not unnecessarily restrict the job prospects of people with disabilities.

 i Visual impairment - The rise in the use of graphical interfaces reduces the possibilities for visually

impaired users. In text-based interaction, screen readers using synthesized speech or braille output devices

provided complete access to computers: input relied on touch-typing, with these mechanisms providing the

output. There are two key approaches to extending access: the use of sound and the use of touch. A number

of systems use sound to provide access to graphical interfaces for people with visual impairment.

A limitation of this technology at present is that objects must be rendered using specialist software in order

for the devices to calculate the appropriate force to apply back to the user.

 ii Hearing impairment - Compared with a visual disability where the impact on interacting with a

graphical interface is immediately obvious, a hearing impairment may appear to have little impact on the use of

an interface. After all, it is the visual not the auditory channel that is predominantly used. To an extent this is

true, and computer technology can actually enhance communication opportunities for people with hearing loss.

Email and instant messaging are great levellers and can be used equally by hearing and deaf users alike.
Gesture recognition has also been proposed to enable translation of signing to speech or text, again to

improve communication particularly with non-signers.
However, the increase in multimedia and the use of sound in interfaces has, ironically, created some access

difficulties for people with hearing problems. Many multimedia presentations contain auditory narrative. If this

is not supplemented by textual captions, this information is lost to deaf users. Captioning audio content, where

there is not already a graphical or textual version, also has the advantage of making audio files easier and

more efficient to index and search, which in turn enhances the experience of all users

 iii Physical impairment - Users with physical disabilities vary in the amount of control and movement

that they have over their hands, but many find the precision required in mouse control difficult. Speech input

and output is an option for those without speech difficulties.

An alternative is the eyegaze system, which tracks eye movements to control the cursor, or a keyboard

driver that can be attached to the user’s head. If the user is unable to control head movement, gesture and

movement tracking can be used to allow the user control.

 iv Speech impairment - For users with speech and hearing impairments, multimedia systems provide

a number of tools for communication, including synthetic speech and text-based communication and

conferencing systems. Textual communication is slow, which can lower the effectiveness of the communication.

Predictive algorithms have been used to anticipate the words used and fill them in, to reduce the amount of

typing required. Conventions can help to provide context, which is lost from face-to-face communication.

 For example the ‘smilie’ :-), to indicate a joke.

 v Dyslexia - Users with cognitive disabilities such as dyslexia can find textual information difficult. In

severe cases, speech input and output can alleviate the need to read and write and allow more accurate input and

output. In cases where the problem is less severe, spelling correction facilities can help users.

However, these need to be designed carefully: often conventional spelling correction programs are useless for

dyslexic users since the programs do not recognize their idiosyncratic word construction methods. As well as

simple transpositions of characters, dyslexic users may spell phonetically, and correction programs must be able

to deal with these errors.
 Colour coding information can help in some cases and provision of graphical information to support

textual can make the meaning of text easier to grasp.

 vi Autism - Autism affects a person’s ability to communicate and interact with people around them and

to make sense of their environment. This manifests itself in a range of ways but is characterized by the triad of

impairments:

 Social interaction – problems in relating to others in a meaningful way or responding appropriately to social

situations.
 Communication – problems in understanding verbal and textual language including the use of gestures and

expressions.
 Imagination – problems with rigidity of thought processes, which may lead to repetitive behavior and

inflexibility.

 How might universal design of technology assist people with autism? There are two main areas of

interest: communication and education.

 Communication and social interaction are major areas of difficulty for people with autism.

Computers, on the other hand, are often motivating, perhaps because they are relatively consistent, predictable

and impersonal in their responses. The user is in control.

 Computer-mediated communication and virtual environments have been suggested as possible

ways of enabling people with autism to communicate more easily with others, by giving the user control over

the situation. Some people with autism have difficulties with language and may be helped by graphical

representations of information and graphical input to produce text and speech. Again this is supported by

providing redundancy in the design.

 Computers may also have a role to play in education of children with autism, particularly by

enabling them to experience (through virtual environments and games) social situations and learn appropriate

responses. This can again provide a secure and consistent environment where the child is in control of his own

learning.

2.5.3.2 DESIGNING FOR DIFFERENT GROUPS

Older people and children have specific needs when it comes to interactive technology.

 i Older people - The requirements of the older population may differ significantly from other

population groups, and will vary considerably within the population group. The proportion of disabilities

increases with age: more than half of people over 65 have some kind of disability. Just as in younger people

with disabilities, technology can provide support for failing vision, hearing, speech and mobility.

New communication tools, such as email and instant messaging, can provide social interaction in cases where

lack of mobility or speech difficulties reduce face-to-face possibilities.

 Mobile technologies can be used to provide memory aids where there is age-related memory loss.

In spite of the potential benefits of interactive technology to older people, very little attention has been paid to

this area until recently.

 Researchers are now beginning to address issues such as how technology can best support older

people, what the key design issues are, and how older people can be effectively included in the design process,

and this area is likely to grow in importance in the future.

 ii Children - Like older people, children have distinct needs when it comes to technology, and again,

as a population, they are diverse. The requirements of a three year old will be quite different from those of a 12

year old, as will be the methods that can be used to uncover them.

 Children are, different from adults, and have their own goals and likes and dislikes. It is therefore

important to involve them in the design of interactive systems that are for their use, though this in itself can be

challenging as they may not share the designer’s vocabulary or be able to verbalize what they think.

 Design approaches have therefore been developed specifically to include children actively as members

of the design team. As well as their likes and dislikes, children’s abilities will also be different from those of

adults. Younger children may have difficulty using a keyboard for instance, and may not have well-developed

hand–eye coordination. Pen-based interfaces can be a useful alternative input device. Again, universal design

principles guide us in designing interfaces that children can use. Interfaces that allow multiple modes of input,

including touch or handwriting, may be easier for children than keyboard and mouse. Redundant displays,

where information is presented through text, graphics and sound will also enhance their experience.

2.5.3.3 DESIGNING FOR CULTURAL DIFFERENCES

Cultural difference is used synonymously with national differences but this is too simplistic. We can draw out

some key factors that we need to consider carefully if we are to practice universal design. These include

language, cultural symbols, gestures and use of colour.
 Layouts and designs may reflect a language read from left to right and top to bottom, which will be

unworkable with languages that do not follow this pattern.

The study of the meaning of symbols is known as semantics and is a diversion for the student of universal

design.

Use of gesture is common in video and animation and care must be taken with differences. Finally, colours

are often used in interfaces to reflect ‘universal’ conventions, such as red for danger and green for go. In fact,

red and green mean many different things in different countries. As well as danger, red represents life (India),

happiness (China) and royalty (France). Green is a symbol of fertility (Egypt) and youth (China) as well as

safety (Anglo-American). It is difficult to assume any universal interpretation of colour but the intended

significance of particular colours can be supported and clarified through redundancy – providing the same

information in another form as well.

All the Best!

1

UNIT III MODELS AND THEORIES

Syllabus: Cognitive models –Socio-Organizational issues and stake holder requirements – Communication and

collaboration models-Hypertext, Multimedia and WWW.

3.1 COGNITIVE MODELS

 goal and task hierarchies

 linguistic

 physical and device

 architectural

They model aspects of user:

 understanding

 knowledge

 intentions

 processing

Common categorization:
 Competence vs. Performance

o Computational flavour

o No clear divide

3.1.1 GOAL AND TASK HIERARCHIES

 Many models make use of a model of mental processing in which the user achieves goal by solving sub goals in a divide

 and-conquer fashion.

 Two models are GOMS and CCT.

Example: sales report

produce report gather data

 find book names

 do keywords search of names database

 … further sub-goals

 sift through names and abstracts by hand

 … further sub-goals

Produce a report on sales of introductory HCI textbooks. To achieve this goal we divide it into several sub goals,

say gathering the data together, producing the tables and histograms, and writing the descriptive material.

 Concentrating on the data gathering, we decide to split this into further sub goals:

 find the names of all introductory HCI textbooks and then search the book sales database for these books.

Similarly, each of the other sub goals is divided up into further sub goals, until some level of detail is found at which we

decide to stop.

Goals And Tasks

o goals – intentions

 what you would like to be true

o tasks – actions

 how to achieve it

GOMS– goals are internal

o HTA – actions external

 tasks are abstractions

Issues for Goal Hierarchies:

 Granularity
 Where do we start?

 Where do we stop?

 Routine learned behavior, not problem solving
 The unit task

 Conflict
 More than one way to achieve a goal

 Error

Techniques:
 Goals, Operators, Methods and Selection (GOMS) – Card, Moran and Newell

 Cognitive Complexity Theory (CCT) – Kieras & Polson

 Hierarchical Task Analysis (HTA)

2

3.1.1.1 GOMS

 Goals- what the user wants to achieve

 Operators- basic actions user performs

 Methods-decomposition of a goal into sub goals/operators

 Selection- means of choosing between competing methods

Goals Example:

Goal: CLOSE-WINDOW

 [select GOAL: USE-MENU-METHOD

. MOVE-MOUSE-TO-FILE-MENU

. PULL-DOWN-FILE-MENU

. CLICK-OVER-CLOSE-OPTION

GOAL: USE-CTRL-W-METHOD

. PRESS-CONTROL-W-KEYS]

For a particular user:

Rule 1: Select USE-MENU-METHOD unless another rule applies

Rule 2: If the application is GAME, select CTRL-W-METHOD

3.1.1.2 COGNITIVE COMPLEXITY THEORY

Cognitive complexity theory, introduced by Kieras and Polson, begins with the basic premises of goal

decomposition from GOMS and enriches the model to provide more predictive power.

CCT has two parallel descriptions:

 User production rules

 Device generalized transition networks

one of the user’s goals and the other of the computer system (called the device in CCT).

The description of the user’s goals is based on a GOMS-like goal hierarchy, but is expressed primarily using production

rules.

 Production rules are of the form:

o if condition then action

where condition is a statement about the contents of working memory. If the condition is true then the production rule

is said to fire. An action may consist of one or more elementary actions, which may be either changes to the working

memory, or external actions such as keystrokes. The production rule ‘program’ is written in a LISP-like language.

 Transition networks covered under dialogue models

Example Ediing with vi

 Production rules are in long-term memory

 Model working memory as attribute-value mapping:

(GOAL perform unit task)

 (TEXT task is insert space)

 (TEXT task is at 5 23)

 (CURSOR 8 7)

 Rules are pattern-matched to working memory,

As an example, we consider an editing task using the UNIX vi text editor. The task is to insert a space where one has been

missed out in the text, for instance if we noticed that in the above paragraph we had written ‘cognitive complexity theory’.

This is a reasonably frequent typing error and so we assume that we have developed good procedures to perform the task.

(SELECT-INSERT-SPACE

IF (AND (TEST-GOAL perform unit task)

(TEST-TEXT task is insert space) (NOT (TEST-GOAL insert space))

(NOT (TEST-NOTE executing insert space))

THEN ((ADD-GOAL insert space)

(ADD-NOTE executing insert space)

(LOOK-TEXT task is at %LINE %COL)))

(INSERT-SPACE-DONE

IF (AND (TEST-GOAL perform unit task)

(TEST-NOTE executing insert space)

(NOT (TEST-GOAL insert space)))

THEN

((DELETE-NOTE executing insert space)

3

(DELETE-GOAL perform unit task)

(UNBIND %LINE %COL)))

(INSERT-SPACE-1

IF (AND (TEST-GOAL insert space)

(NOT (TEST-GOAL move cursor)) (NOT (TEST-

CURSOR %LINE %COL)))

THEN ((ADD-GOAL move cursor to %LINE %COL)))

(INSERT-SPACE-2

IF (AND (TEST-GOAL insert space)

 (TEST-CURSOR %LINE %COL))

THEN ((DO-KEYSTROKE ‘I’)

(DO-KEYSTROKE SPACE)

(DO-KEYSTROKE ESC)

(DELETE-GOAL insert space)))

To see how these rules work, imagine that the user has just seen the typing mistake and thus the contents of working memory

(w.m.) are

(GOAL perform unit task)

 (TEXT task is insert space)

 (TEXT task is at 5, 23)

 (CURSOR 8 7)

TEXT refers to the text of the manuscript that is being edited and CURSOR refers to the insertion cursor on the

screen. Of course, these items are not actually located in working memory – they are external to the user – but we assume

that knowledge from observing them is stored in the user’s working memory.

The location (5,23) is the line and column of the typing mistake where the space is required. However, the current

cursor position is at line 8 and column 7. This is of course acquired into the user’s working memory by looking at the screen.

Looking at the four rules above

 (SELECT-INSERT-SPACE, INSERT-SPACE-DONE,

INSERT-SPACE-1 and INSERT-SPACE-2), only the first can fire. The condition for

SELECT-INSERT-SPACE is:

(AND (TEST-GOAL perform unit task)

true because (GOAL perform unit task) is in w.m.

(TEST-TEXT task is insert space)

true because (TEXT task is insert space) is in w.m.

 (NOT (TEST-GOAL insert space))

 true because (GOAL insert space) is not in w.m.

 (NOT (TEST-NOTE executing insert space)))

 true because (NOTE executing insert space)

 is not in w.m.

So, the rule fires and its action is performed. This action has no external effect in terms of keystrokes, but adds extra

information to working memory. The (LOOK-TEXT task is at %LINE %COL) looks for a corresponding entry and binds

LINE and COL to 5 and 23 respectively. These are variables, somewhat as in a normal programming language, which are

referred to again in other rules.

The contents of working memory after the firing of rule SELECT-INSERT-SPACE are as follows (note that the order of

elements of working memory is arbitrary):

(GOAL perform unit task) (TEXT task is insert space) (TEXT task is

at 5 23)

(NOTE executing insert space) (GOAL insert space)

(LINE 5) (COL 23) (CURSOR 8 7)

At this point neither rule SELECT-INSERT-SPACE nor INSERT-SPACE-DONE will fire as the entry (GOAL

insert space) will make their conditions false. As LINE is bound to 5 and COL is bound to 23, the condition (TEST-

CURSOR %LINE %COL) will be false also, and hence only rule INSERT-SPACE-1 can fire.

After this rule’s actions have been performed, the working memory will include the entry (GOAL move cursor to 5

23). The rules for moving the cursor are not included here, but would be quite extensive, moving up/down and right/left

depending on the relative positions of the cursor and the target location.

4

Eventually, assuming the cursor movement is successful, the cursor would be at (5,23) whence rule INSERT-

SPACE-2 would be able to fire. This would perform the keystrokes: I, SPACE and ESC, which in vi puts the editor into

insert mode, types the space and then leaves insert mode. The action also removes the insert space goal from working

memory as this goal has been achieved.

 Now the goal has been removed, the second rule INSERT-SPACE-DONE is free to fire, which ‘tidies up’

working memory. In particular, it ‘unbinds’ the variables LINE and COL, that is it removes the bindings for them from

working memory.

Notice that the rules did not fire in the order they were written. Although they look somewhat like the if–then–else

commands one would get in a standard programming language, they behave very differently. The rules are all active and at

each moment any rule that has its conditions true may fire. Some rules may never fire; for instance, if the cursor is at the

correct position the third rule would not fire. Furthermore, the same rule may fire repeatedly; for example, if we were to

write out the production rules for moving the cursor, one rule may well be

 (MOVE-UP

IF (AND (TEST-GOAL move-up)

(TEST-CURSOR-BELOW %LINE))

THEN ((DO-KEYSTROKE ‘K’)))

This rule is to type ‘K’ (the vi command to move the cursor up one line) while the cursor is below the desired line. It will, of

course, be constantly refired until the cursor is at the correct line.

Notice that the keystrokes for actually inserting the space, once you are at the right position, have been

proceduralized. That is, the user does not go through the subgoals ‘enter insert mode’, ‘type space’, ‘leave insert

mode’. For a complex insertion, it is quite likely that the user will perform exactly these goals. However, the act of inserting

a single space is assumed to be so well rehearsed that it is stored as a single chunk. That is, the rules above represent expert

knowledge of the vi editor.

The text would read: ‘cognitive complexity theory’(CCT)rules are closely related to GOMS-like goal

hierarchies; the rules may be generated from such a hierarchy, or alternatively, we may analyze the production rules to

obtain the goal tree:

GOAL: insert space

 GOAL: move cursor – if not at right position

 PRESS-KEY-I

. PRESS-SPACE

 PRESS-ESCAPE

The stacking depth of this goal hierarchy (as described for GOMS) is directly related to the number of (GOAL ...)

terms in working memory.

In fact, the CCT rules can represent more complex plans than the simple sequential hierarchies of GOMS. The

continuous activity of all production rules makes it possible to represent concurrent plans. For example, one could have one

set of production rules representing the goal of writing a book, and another set representing the goal of drinking tea. These

rules could both be active simultaneously, thus allowing an author to drink tea whilst typing.

Notes on CCT

 Parallel model

 Proceduralisation of actions

 Novice versus expert style rules

 Error behaviour can be represented

 Measures

 depth of goal structure

 number of rules

 comparison with device description

3.1.1.3 PROBLEMS WITH GOAL HIERARCHIES:

 The formation of a goal hierarchy is largely a post hoc technique and runs a very real risk of being defined by the

computer dialog rather than the user. One way to rectify this is to produce a goal structure based on pre-existing manual

procedures and thus obtain a natural hierarchy. GOMS defines its domain to be that of expert use, and thus the goal

structures that are important are those which users develop out of their use of the system.

Example: Automated teller machines (ATMs)

GOAL: GET-MONEY

GOAL: USE-ATM

 INSERT-CARD

5

 ENTER-PIN

ENTER-AMOUNT

 COLLECT-MONEY

outer goal now satisfied goal stack popped >>

 COLLECT-CARD – subgoal operators missed

Banks (at least some of them) soon changed the dialog order so that the card was always retrieved before the

money was dispensed. A general rule that can be applied to any goal hierarchy from this is that no higher-level goal should

be satisfied until all subgoals have been satisfied.

3.1.2 LINGUISTIC NOTATIONS:

 Understanding the user's behaviour and cognitive difficulty based on analysis of language between user and

system.

 Similar in emphasis to dialogue models

 Backus–Naur Form (BNF)

 Task–Action Grammar (TAG)

3.1.2.1 BACKUS-NAUR-FORM (BNF)

BNF has been used widely to specify the syntax of computer programming languages, and many system

dialogs can be described easily using BNF rules.

For example, imagine a graphics system that has a line-drawing function. To select the function the user

must select the ‘line’ menu option. The line-drawing function allows the user to draw a polyline, that is a sequence

of line arcs between points. The user selects the points by clicking the mouse button in the drawing area. The user

double clicks to indicate the last point of the polyline.

 Basic syntax:

o nonterminal ::= expression

 An expression

o contains terminals and nonterminals

o combined in sequence (+) or as alternatives (|)

draw-line ::= select-line + choose-points

 + last-point

select-line ::= position-mouse + CLICK-MOUSE

choose-points ::= choose-one

 | choose-one + choose-points

choose-one ::= position-mouse + CLICK-MOUSE

last-point ::= position-mouse + DOUBLE-CLICK-MOUSE

position-mouse ::= empty | MOVE-MOUSE + position-mouse

The names in the description are of two types:

 non-terminals, shown in lower case,

 terminals, shown in upper case.

Terminals represent the lowest level of user behavior, such as pressing a key, clicking a mouse button or

moving the mouse. Non-terminals are higher-level abstractions. The non-terminals are defined in terms of other

non-terminals and terminals by a definition of the form

Name :: = expression

The ‘::=’ symbol is read as ‘is defined as’. Only non-terminals may appear on the left of a definition. The

right-hand side is built up using two operators ‘+’ (sequence) and ‘|’ (choice).

For example, the first rule says that the non-terminal draw-line is defined to be select-line followed by choose-points

followed by last-point. All of these are non-terminals, that is they do not tell us what the basic user actions are. The second

rule says that select-line is defined to be position-mouse (intended to be over the ‘line’ menu entry) followed by CLICK-

MOUSE. This is our first terminal and represents the actual clicking of a mouse.

 Terminals

o lowest level of user behaviour

o e.g. CLICK-MOUSE, MOVE-MOUSE

 Nonterminals

o ordering of terminals

o higher level of abstraction

o e.g. select-menu, position-mouse

6

 For example, we could have replaced the rules for choose-points and choose-one with the single definition

choose-points ::= position-mouse + CLICK-MOUSE

| position-mouse + CLICK-MOUSE + choose-points

Measurements with BNF

 Number of rules (not so good)

 Number of + and | operators

 Complications
 same syntax for different semantics

 no reflection of user's perception

 minimal consistency checking

3.1.2.2 TASK ACTION GRAMMAR:

 Making consistency more explicit

 Encoding user's world knowledge

 Parameterised grammar rules

 Nonterminals are modified to include additional semantic features

Consistency in tag

 In BNF, three UNIX commands would be described as:

To illustrate consistency, we consider the three UNIX commands: cp (for copying files), mv (for moving files)

and ln (for linking files).Each of these has two possible forms. They either have two arguments, a source and

destination filename, or have any number of source filenames followed by a destination directory:

copy ::= ‘cp’ + filename + filename

 | ‘cp’ + filenames + directory

move ::= ‘mv’ + filename + filename

 | ‘mv’ + filenames + directory

link ::= ‘ln’ + filename + filename

 | ‘ln’ + filenames + directory

 No BNF measure could distinguish between this and a less consistent grammar in which

link::= ln + filename + filename | ln + directory + filenames

 consistency of argument order made explicit using a parameter, or semantic

 feature for file operations

 Feature Possible values

Op = copy; move; link

 Measures based upon BNF could not distinguish between these consistent commands and an inconsistent

alternative – say if l took its directory argument first. Task–action grammar was designed to reveal just this sort of

consistency. Its description of the UNIX commands would be

file-op[Op] := command[Op] + filename + filename

| command[Op] + filenames + directory

command[Op=copy] := ‘cp’

command[Op=move] := ‘mv’

command[Op=link] := ‘ln’

Other uses of Tag:

 User’s existing knowledge

 Congruence between features and commands

 These are modelled as derived rules

3.1.3 PHYSICAL AND DEVICE MODELS

 The Keystroke Level Model (KLM)

 Buxton's 3-state model

 Based on empirical knowledge of human motor system

 User's task: acquisition then execution.

 these only address execution

 Complementary with goal hierarchies

3.1.3.1 KEYSTROKE LEVEL MODEL (KLM):

 Keystroke is aimed at unit tasks within interaction – the execution of simple command sequences, typically taking no

more than 20 seconds.

7

Examples : search and replace feature, or changing the font of a word. It does not extend to complex actions such

as producing a diagram. The assumption is that these more complex tasks would be split into subtasks (as in GOMS) before

the user attempts to map them into physical actions. The task is split into two phases:

i. acquisition of the task, when the user builds a mental representation of the task;

ii. execution of the task using the system’s facilities.

KLM only gives predictions for the latter stage of activity. During the acquisition phase, the user will have decided how

to accomplish the task using the primitives of the system, and thus, during the execution phase, there is no high-level

mental activity – the user is effectively expert. KLM is related to the GOMS model.

GOMS model decomposes the execution phase into five different physical motor operators, a mental operator and a system

response operator:

K Keystroking, actually striking keys, including shifts and other modifier keys.

B Pressing a mouse button.

P Pointing, moving the mouse (or similar device) at a target.

H Homing, switching the hand between mouse and keyboard.

D Drawing lines using the mouse.

M Mentally preparing for a physical action.

 System response which may be ignored if the user does not have to wait for it, as in copy typing.

The execution of a task will involve interleaved occurrences of the various operators. For instance, imagine we are using a

mouse-based editor. If we notice a single character error we will point at the error, delete the character and retype it, and

then return to our previous typing point. This is decomposed as follows:

1. Move hand to mouse H[mouse]

2.

Position mouse after bad

character PB[LEFT]

3. Return to keyboard H[keyboard]

4. Delete character MK[DELETE]

5. Type correction K[char]

6. Reposition insertion point H[mouse]MPB[LEFT]

Notice that some operators have descriptions added to them, representing which device the hand homes to (for example,

[mouse]) and what keys are hit (for example, LEFT – the left mouse button).

The model predicts the total time taken during the execution phase by adding the component times for each of the

above activities. For example, if the time taken for one keystroke is tK, then the total time doing keystrokes is

TK = 2tK

Table 3.1 Times for various operators in the keystroke-level model

Operator Remarks Time (s)

K Press key

 good typist (90 wpm) 0.12

 poor typist (40 wpm) 0.28

 non-typist 1.20

B Mouse button press

 down or up 0.10

 click 0.20

P Point with mouse

0.1 log2(D/S Fitts’ law

 average movement 1.10

H Home hands to and from keyboard 0.40

D Drawing – domain dependent –

M Mentally prepare 1.35

R Response from system – measure –

wpm = words per minute

8

screen pointing can be used. Drawing time depends on the number and length of the lines drawn, and is fairly domain

specific, but one can easily use empirical data for more general drawing tasks. Finally, homing time and mental preparation

time are assumed constant. Typical times are summarized in Table 3.1.

Example for keystroke-level model:

 we compare the two methods for iconizing a window.

One used the ‘L7’ function key, and the other the ‘CLOSE’ option from the window’s pop-up menu. The latter is obtained

by moving to the window’s title bar, depressing the left mouse button, dragging the mouse down the pop-up menu to the

‘CLOSE’ option, and then releasing the mouse button. We assume that the user’s hand is on the mouse to begin with, and

hence only the L7-METHOD will require a homing operator. The operators for the two methods are as follows:

L7-METHOD H[to keyboard] MK[L7 function key]

CLOSE-METHOD P[to menu bar] B[LEFT down] MP[to option] B[LEFT up]

The total times are thus

L7-METHOD = 0.4 + 1.35 + 0.28

 = 2.03 seconds

CLOSE-

METHOD = 1.1 +0.1 + 1.35 + 1.1 + 0.1

 = 3.75 seconds

3.1.3.2 THREE-STATE MODEL
 Buxton has developed a simple model of input devices, the three-state model, which captures some of these crucial

distinctions. He begins by looking at a mouse. If you move it with no buttons pushed, it normally moves the mouse cursor

about. This tracking behavior is termed state 1. Depressing a button over an icon and then moving the mouse will often

result in an object being dragged about. This he calls state 2 (see Figure 3.1).

If instead we consider a light pen with a button, it behaves just like a mouse when it is touching the screen. When its button

is not depressed, it is in state 1, and when its button is down, state 2. However, the light pen has a third state, when the light

pen is not touching the screen. In this state the system cannot track the light pen’s position. This is called state 0 (see Figure

3.2).

A touch screen is like the light pen with no button. While the user is not touching the screen, the system cannot track the

finger – that is, state 0 again. When the user touches the screen, the system can begin to track – state 1. So a touch screen is

a state 0–1 device whereas a mouse is a state 1–2 device. As there is no difference between a state 0–2 and a state 0–1

device, there are only the three possibilities we have seen.

Figure 3.1 Mouse transitions: states 1 and 2

Figure 3.2 Light pen transitions: three states

The only additional complexity is if the device has several buttons, in which case we

would have one state for each button: 2left, 2middle, 2right.

Table 3.2 Fitts’ law coefficients (after MacKenzie, Sellen and Buxton [221], © 1991 ACM, Inc. Reprinted by

permission)

Device a (ms) b (ms/bit)

Pointing (state 1)

−107

Mouse 223

Trackball 75 300

9

Dragging (state 2)

Mouse 135 249

Trackball −349 688

shown that these differences do exist . Table 3.2 shows the results obtained for a mouse and trackball.

3.1.4 COGNITIVE ARCHITECTURES

All of these cognitive models make assumptions about

o the architecture of the human mind.

 Long-term/Short-term memory

 Problem spaces

 Interacting Cognitive Subsystems

 ACT

3.1.4.1 THE PROBLEM SPACE MODEL

 A problem space consists of a set of states and a set of operations that can be performed on the states.

Behavior in a problem space is a two-step process.

 First, the current operator is chosen based on the current state and then it is applied to the current state to achieve

the new state. The problem space must represent rational behavior, and so it must characterize the goal of the agent.

 A problem space represents a goal by defining the desired states as a subset of all possible states.

Once the initial state is set, the task within the problem space is to find a sequence of operations that form a path within the

state space from the initial state to one of the desired states, whereupon successful termination occurs.

3.1.4.2 INTERACTING COGNITIVE SUBSYSTEMS

 Barnard has proposed a very different cognitive architecture, called interacting cognitive subsystems (ICS). ICS

provides a model of perception, cognition and action, but unlike other cognitive architectures, it is not intended to produce a

description of the user in terms of sequences of actions that he performs. ICS provides a more holistic view of the user as an

information-processing machine. The emphasis is on determining how easy particular procedures of action sequences

become as they are made more automatic within the user.

ICS is another example of a general cognitive architecture that can be applied to interactive design. One of the features of

ICS is its ability to explain how a user proceduralizes action.

Display based Interaction

 Most cognitive models do not deal with user observation and perception

 Some techniques have been extended to handle system output but problems persist 
 (e.g., BNF with sensing terminals, Display-TAG)

 Exploratory interaction versus planning

3.2 SOCIO-ORGANIZATIONAL ISSUES AND STAKE HOLDER REQUIREMENTS

3.2.1 INTRODUCTION:

 Organizational issues affect acceptance

o conflict & power, who benefits, encouraging use

 Stakeholders

o identify their requirements in organizational context

 Socio-technical models

o human and technical requirements

 Soft systems methodology

o broader view of human and organizational issues

 Participatory design

o includes the user directly in the design process

 Ethnographic methods

o study users in context, unbiased perspective

3.2.2 ORGANIZATIONAL ISSUES

 There are several organizational issues that affect the acceptance of technology by users and that must therefore be

considered in system design:

 systems may not take into account conflict and power relationships

10

 those who benefit may not do the work

 not everyone may use systems.

 In addition to generic issues, designers must identify specific stakeholder requirements within their

organizational context. Socio-technical models capture both human and technical requirements. Soft systems

methodology takes a broader view of human and organizational issues. Participatory design includes the user

directly in the design process. Ethnographic methods study users in context, attempting to take an unbiased

perspective.

Organizational factors can make or break a system studying the work group is not sufficient

 any system is used within a wider context

 and the crucial people need not be direct users

Before installing a new system must understand:

 who benefits

 who puts in effort

 the balance of power in the organisation … and how it will be affected

3.2.2.1 CONFLICT AND POWER (COOPERATION OR CONFLICT?)

CSCW = computer supported cooperative work

 people and groups have conflicting goals

 systems assuming cooperation will fail!

e.g. computerize stock control stock man looses control of information⇒ subverts the system

identify stakeholders – not just the users

3.2.2.2 CHANGING POWER STRUCTURES (ORGANISATIONAL STRUCTURE)

 Groupware affects organisational structures

 communication structures reflect line management

 email – cross-organisational communication

Disenfranchises lower management

 ⇒ disaffected staff and ‘sabotage’

Technology can be used to change management style and power structures

 but need to know that is what we are doing

 and more often an accident !

3.2.2.3 THE INVISIBLE WORKER:
Telecommunications improvements allow:

 neighbourhood workcentres

 home-based tele-working

Many ecological and economic benefits

 reduce car travel

 flexible family commitments

but:

 ‘management by presence’ doesn't work

 presence increases perceived worth

 problems for promotion

Barriers to tele-working are managerial/social not technological

3.2.2.4 WHO BENEFITS? (BENEFITS FOR ALL)

Disproportionate effort

who puts in the effort ≠ who gets the benefit

Example: shared diary:

 effort: secretaries and subordinates, enter data

 benefit: manager easy to arrange meetings

 result: falls into disuse

11

Solutions:

 coerce use!

 design in symmetry

3.2.2.5 FREE RIDER PROBLEM:

Even where there is no bias toward any particular people, a system may still not function symmetrically, which may be a

problem, particularly with shared communication systems. One issue is the free rider problem.

no bias, but still problem

possible to get benefit without doing work

if everyone does it, system falls into disuse
e.g. electronic conferences

 – possible to read but never contribute

solutions:

strict protocols (e.g., round robin) increase visibility – rely on social pressure

3.2.2.6 CRITICAL MASS:

 Early telephone system:

few subscribers – no one to ring

lots of subscribers – never stops ringing!

Electronic communications similar:

 benefit - number of subscribers

early users have negative cost/benefit need critical mass to give net benefits

How to get started?

 look for cliques to form core user base

 design to benefit an initial small user base

Fig 3.3 Cost/benefit of System use

3.2.2.7 AUTOMATING PROCESSES – WORKFLOW AND BPR

 The major task in many organizations is moving pieces of paper around. An order is received by phone and an order

form filled in by the sales executive. The order form is passed to accounts who check the credit rating and if all is okay it is

passed on to stores who check availability and collect the order together at the picking line. When the order is dispatched, a

delivery note is packed with the order and a copy is returned to accounts, who send an invoice to the customer.

Organizations have many such processes, and workflow systems aim to automate much of the process using electronic

forms, which are forwarded to the relevant person based on pre-coded rules. Some workflow systems are built using

special-purpose groupware, often based on a notation for describing the desired workflow.

 A more radical approach to organizational processes is found in business process re-engineering (BPR). Traditionally,

organizations have been structured around functions: sales, accounts, stores, manufacturing. However, the purpose of an

organization can be seen in terms of key business processes. The ordering/delivery process described above is a typical and

important example.

 In BPR these processes are recorded and analyzed. Problems in the current process are noted and the whole process

may be redesigned in order to make the path of the process more efficient. For example, instead of sending an order to the

accounts department to approve, a list of customer credit limits could be given to the sales executives. They could then check

the credit rating of the customer whilst on the phone and only forward the order to accounts if there are any unusual

problems.

12

 Finally, the whole structure of the organization may be modified to reflect and support the key processes more closely.

Typically, this involves stripping layers of middle management. BPR as an issue engenders zealots and reactionaries in equal

measure.

Evaluating the Benefits:

Assuming we have avoided the pitfalls!

How do we measure our success?
job satisfaction and information flow

 – hard to measure
economic benefit

 – diffuse throughout organisation

But ..

costs of hardware and software … only too obvious

perhaps we have to rely on hype!

3.2.3 CAPTURING REQUIREMENTS:

 need to identify requirements within context of use

 need to take account of

 stakeholders

 work groups and practices

 organisational context

 many approaches including

 socio-technical modelling

 soft system modelling

 participatory design

 contextual inquiry

3.2.3.1 WHO ARE THE STAKE HOLDERS?

 system will have many stakeholders with potentially conflicting interests

 A stakeholder, therefore, can be defined as anyone who is affected by the success or failure of the system.

Primary stakeholders are people who actually use the system – the end-users.

Secondary stakeholders are people who do not directly use the system, but receive output from it or provide input to it (for

example, someone who receives a report produced by the system).

Tertiary stakeholders are people who do not fall into either of the first two categories but who are directly affected by the

success or failure of the system (for example, a director whose profits increase or decrease depending on the success of the

system).

Facilitating stakeholders are people who are involved with the design, development and maintenance of the system.

Example: Classifying stakeholders – an airline booking system

 An international airline is considering introducing a new booking system for use by

associated travel agents to sell flights directly to the public. The stakeholders can be classified as follows:

Primary stakeholders: travel agency staff, airline booking staff

Secondary stakeholders: customers, airline management

Tertiary stakeholders: competitors, civil aviation authorities, customers’ traveling

companions, airline shareholders

Facilitating stakeholders: design team, IT department staff

 designers need to meet as many stakeholder needs as possible


 usually in conflict so have to prioritise

 often priority decreases as move down categories e.g. primary most important

not always e.g. life support machine

3.2.3.2 SOCIO-TECHNICAL MODELS

 response to technological determinism
 concerned with technical, social, organizational and human aspects of design

 describes impact of specific technology on organization

The key focus of the socio-technical approach is to describe and document the impact of the introduction of a specific

technology into an organization. Methods vary but most attempt to capture certain common elements:

 The problem being addressed: there is a need to understand why the technology is being proposed and

13

 what problem it is intended to solve.

 The stakeholders affected, including primary, secondary, tertiary and facilitating, together with their objectives,

goals and tasks.

 The workgroups within the organization, both formal and informal.

 The changes or transformations that will be supported.

 The proposed technology and how it will work within the organization.

 External constraints and influences and performance measures.

Information is gathered using methods such as interviews, observation, focus groups and document analysis.

The methods guide this information-gathering process and help the analyst to make sense of what is discovered.

By attempting to understand these issues, socio-technical approaches aim to provide a detailed view of the role technology

will play and the requirements of successful deployment.

3.2.3.2.1 CUSTOM METHODOLOGY:

CUSTOM is a socio-technical methodology designed to be practical to use in small organizations.

Six Stage Process - Focus On Stakeholders

 Describe the organizational context, including its primary goals, physical characteristics, political and

 economic background.

 Identify and describe stakeholders. All stakeholders are named, categorized (as primary, secondary, tertiary or

facilitating) and described with regard to personal issues, their role in the organization and their job.

 Identify and describe work-groups. A work-group is any group of people who work together on a task, whether

formally constituted or not. Again, work-groups are described in terms of their role within the organization and their

characteristics.

 Identify and describe task–object pairs. These are the tasks that must be performed, coupled with the objects

that are used to perform them or to which they are applied.

 Identify stakeholder needs. Stages 2– 4 are described in terms of both the current system and the proposed

system. Stakeholder needs are identified by considering the differences between the two.

 Consolidate and check stakeholder requirements. Here the stakeholder needs list is checked against the criteria

determined at earlier stages.

 Stages 2 to 4 are described in terms of the current situation (before the new technology is introduced) and the

proposed situation (after deployment). Stakeholders are asked to express their views not only of their current role and

position but of their expectations in the light of the changes that will be made. In this way, stakeholder concerns and

goals are elaborated. In addition, the impact of the technology on working practices is considered (Stage 3) and the

transformations that will be supported by the system specified (Stage 4).

 The changes from the current position to the proposed position represent the issues that need to be

addressed to ensure successful deployment, and these are made explicit during Stages 5 and 6.

3.2.3.2.2 OPEN SYSTEM TASK ANALYSIS(OSTA)

 Eight stage model - focus on task

 primary task is identified in terms of users’ goals

 Task inputs to the system are identified.

 The external environment into which the system will be introduced is described, including physical, economic and

political aspects.

 The transformation processes within the system are described in terms of actions performed on or with objects.

 The social system is analyzed, considering existing work-groups and relationships within and external to the

organization.

 The technical system is described in terms of its configuration and integration with other systems.

 Performance satisfaction criteria are established, indicating the social and

 technical requirements of the system.

 The new technical system is specified.

14

3.2.3.3 SOFTWARE SYSTEM METHODOLOGY:

 There is no assumption of a particular solution: the emphasis is rather on understanding the situation fully. SSM was

developed by Checkland

Figure 3.4 The seven stages of soft systems methodology. (Adapted from Checkland)

 seven stages

 recognition of problem and initiation of analysis

 detailed description of problem situation

 rich picture

 generate root definitions of system

 CATWOE

 conceptual model - identifying transformations

 compare real world to conceptual model

 identify necessary changes

 determine actions to effect changes

CATWOE:

 Clients: those who receive output or benefit from the system

 Actors: those who perform activities within the system

 Transformations: the changes that are affected by the system

 Weltanschauung: (from the German) or World View – This is how the system is perceived in a particular root

definition

 Owner: those to whom the system belongs, to whom it is answerable and who can authorize changes to it

 Environment: the world in which the system operates and by which it is influenced

 Example:

 Client: customer

 Actor: travel agency staff

 Transformation: customer’s intention and request to travel transformed into sale of seat on flight and profit for

organization

 Weltanschauung: profits can be optimized by more efficient sales

 Owner: airline management

 Environment: Regulations of international civil aviation authorities and national contract leg-islation. Local

agency policies worldwide

3.2.3.4 PARTICIPATORY DESIGN:

 In participatory design:

 workers enter into design context

 In ethnography (as used for design):

 designer enters into work context

Both make workers feel valued in design encourage workers to ‘own’ the products

 User is an active member of the design team.

 Characteristics

context and work oriented rather than system oriented

collaborative

iterative

 Methods

15

brain-storming

storyboarding

workshops

pencil and paper exercises

Participatory design has three specific characteristics.

 It aims to improve the work environment and task by the introduction of the design. This makes design and

evaluation context or work oriented rather than system oriented.

 Secondly, it is characterized by collaboration: the user is included in the design team and can contribute to every

stage of the design.

 Finally, the approach is iterative: the design is subject to evaluation and revision at each stage.

The participatory design process utilizes a range of methods to help convey information between the user and designer. They

include

Brainstorming This involves all participants in the design pooling ideas. This is informal and relatively unstructured

although the process tends to involve ‘on-the-fly’ structuring of the ideas as they materialize. All information is recorded

without judgment. The session provides a range of ideas from which to work. These can be filtered using other techniques.

Storyboarding Storyboards can be used as a means of describing the user’s day-to-day activities as well as the potential

designs and the impact they will have.

Workshops These can be used to fill in the missing knowledge of both user and designer and provide a more focussed view

of the design. They may involve mutual enquiry in which both parties attempt to understand the context of the design

from each other’s point of view. The designer questions the user about the work environment in which the design is to be

used, and the user can query the designer on the technology and capabilities that may be available. This establishes

common ground between the user and designer and sets the foundation for the design that is to be produced. The use of

role play can also allow both user and designer to step briefly into one another’s shoes.

Pencil and paper exercises These allow designs to be talked through and evaluated with very little commitment in terms of

resources. Users can ‘walk through’ typical tasks using paper mock-ups of the system design. This is intended to show up

discrepancies between the user’s requirements and the actual design as proposed. Such exercises provide a simple and

cheap technique for early assessment of models. PICTIVE is one such approach to paper prototyping, which includes

representative stakeholders in a video recorded design session.

 Each participant prepares ‘homework’ focussing on the requirements of the system from their particular

perspective, which is then used to introduce and orientate the PICTIVE session. Materials such as sticky notes,

highlighters, plastic labels, paper and scissors are used on a shared design surface to produce a low-tech prototype of the

proposed system, which is finally tested by the group against the tasks identified.

Such methods are not exclusively used in participatory design, of course, and can be used more widely to promote clearer

understanding between designer and stakeholders.

3.2.3.4.1 ETHICS-EFFECTIVE TECHNICAL AND HUMAN IMPLEMENTATION OF COMPUTER BASED

SYSTEMS

 ETHICS is a method developed by Enid Mumford within the socio-technical tradition, but it is distinct in its view

of the role of stakeholders in the process.

 participatory socio-technical approach devised by Mumfor
 system development is about managing change

 non-participants more likely to be dissatisfied

 three levels of participation

 consultative, representative, consensus

 design groups including stakeholder representatives make design decisions

 job satisfaction is key to solution

ETHICS methodology, stakeholders are included as participants in the decision-making process. ETHICS considers the

process of system development as one of managing change: conflicts will occur and must be negotiated to ensure acceptance

and satisfaction with the system. If any party is excluded from the decision-making process then their knowledge and

contribution is not utilized and they are more likely to be dissatisfied. However, participation is not always complete.

Mumford recognizes three levels of participation:

16

 Consultative – the weakest form of participation where participants are asked for their opinions but are not

decision makers.

 Representative – a representative of the participant group is involved in the decision-making process.

 Consensus – all stakeholders are included in the decision-making process.

The usual practice is that design groups are set up to include representatives from each stakeholder group and these

groups make the design decisions, overseen by a steering committee of management and employee representatives.

 The design groups then address the following issues and activities:

 Make the case for change. Change for its own sake is inappropriate. If a case can-not be made for changing the

current situation then the process ends and the system remains as it is.

 Identify system boundaries. This focusses on the context of the current system and its interactions with other

systems, in terms of business, existing techno-logy, and internal and external organizational elements. How will

the change impact upon each of these?

 Describe the existing system, including a full analysis of inputs and outputs and the various other activities

supported, such as operations, control and coordination.

 Define key objectives, identifying the purpose and function of each area of the organization.

 Define key tasks: what tasks need to be performed to meet these objectives?

 Define key information needs, including those identified by analysis of the existing system and those highlighted

by definition of key tasks.

 Diagnose efficiency needs, those elements in the system that cause it to under-perform or perform incorrectly. If

these are internal they can be redesigned out of the new system; if they are external then the new system must be

designed to cope with them.

 Diagnose job satisfaction needs, with a view to increasing job satisfaction where it is low.

 Analyze likely future changes, whether in technology, external constraints (such as legal requirements), economic

climate or stakeholder attitudes. This is neces-sary to ensure that the system is flexible enough to cope with

change.

 Specify and prioritize objectives based on efficiency, job satisfaction and future needs. All stakeholders should be

able to contribute here as it is a critical stage and conflicting priorities need to be negotiated. Objectives are

grouped as either primary (must be met) or secondary (desirable to meet).

The final stages of the ETHICS approach focus on the actual design and evaluation of the system.

3.2.3.5 ETHNOGRAPHIC METHODS

Ethnography is based on very detailed recording of the interactions between people and between people and

their environment. It has a special focus on social relationships and how they affect the nature of work. The ethnographer

does not enter actively into the situation, and does not see things from a particular person’s viewpoint. However, an aim is to

be uncultured, to understand the situation from within its own cultural framework. Culture here means that of the

particular work-group or organization, rather than that of society as a whole. Ethnographers try to take an unbiased and

open-ended view of the situation. They report and do not like to speculate, so it is often unclear how well their approach can

contribute to the design of new systems.

Ethnography and participatory design

 The ethnographic approach differs markedly from the approach of participatory design.

 In participatory design the workers come out of their work situation, either physically or mentally, and share the design

task with the professional designers – effectively the workers become designers. The participatory designer enters into the

subjective experience of the workplace.

 Ethnographic and other situated approaches take the analyst into the workplace, while retaining a level of objectivity.

The advantage is that the analyst sees the whole group’s perspective, rather than that of involved individuals, but the analyst,

however much in tune with the workers, is still ‘out there’. On the other hand, involving the workers in the design process in

itself increases their motivation and acceptance whether or not the resulting design is ‘optimal’.

3.2.3.5.1 CONTEXTUAL INQUIRY:
 Approach developed by Holtzblatt

o in ethnographic tradition but acknowledges and challenges investigator focus

17

o The model of contextual inquiry is of the investigator being apprenticed to the user to learn about his

work.

o investigation takes place in workplace - detailed interviews, observation, analysis of communications,

physical workplace, artefacts

o number of models created:

 sequence, physical, flow, cultural, artefact

 models consolidated across users

o output indicates task sequences, artefacts and communication channels needed and physical and cultural

constraints

 A number of models of the work are developed to capture what is important in the user’s work situation:

 The sequence model elaborates the steps required to complete a specific task, as well as the triggers that initiate

that sequence of steps.

 The physical model maps the physical work environment and how it impacts upon work practice, for example, an

office plan showing where different work activities happen.

 The flow model shows the lines of coordination and communication between the user and other participants within

and outside the workplace.

 The cultural model reflects the influences of work culture and policy and shows the scope of these influences. This

may include official or unofficial codes of behavior, common expectations (which may or may not be explicit) and

value systems.

 The artifact model describes the structure and use of a particular artifact within the work process.

Each of the models above is also consolidated across users to provide a common view of the situation. The result is a

representation of the required task sequences, artifacts and communication channels that must be supported in the new

system as well as the physical and cultural constraints that must be taken into account.

****************** ******************************* *****************

3.3 COMMUNICATION AND COLLABORATION MODELS

3.3.1 CSCW ISSUES AND THEORY:

All computer systems, single-user or multi-user, interact with the work-groups and organizations in which they are used.

 We need to understand normal human–human communication:

o face-to-face communication involves eyes, face and body

o conversation can be analyzed to establish its detailed structure.

 This can then be applied to text-based conversation, which has:

 reduced feedback for confirmation

 less context to disambiguate utterances

 slower pace of interaction but is more easily reviewed.

 Group working is more complex than that of a single person:

 it is influenced by the physical environment

 experiments are more difficult to control and record

 field studies must take into account the social situation.

3.3.2 FACE TO FACE COMMUNICATION:

 Most primitive and most subtle form of communication

 Often seen as the paradigm for computer mediated communication?

3.3.2.1 TRANSFER EFFECTS AND PERSONAL SPACE

 When we come to use computer-mediated forms of communication, we carry forward all our expectations and

social norms from face-to-face communication. People are very adaptable and can learn new norms to go with new

media (for example, the use of ‘over’ for turn-taking when using a walkie-talkie). However, success with new

media is often dependent on whether the participants can use their existing norms. Furthermore, the rules of face-

to-face conversation are not conscious, so, when they are broken, we do not always recognize the true problem.

We may just have a feeling of unease, or we may feel that our colleague has been rude.

3.3.2.2 EYE CONTACT AND GAZE

 to convey interest and establish social presence
 Video may spoil direct eye contact.

18

 but poor quality video better than audio only

3.3.2.3 GESTURES AND BODY LANGUAGE:

 much of our communication is through our bodies

 gesture (and eye gaze) used for deictic reference

 head and shoulders video loses this

So … close focus for eye contact … … or wide focus for body language?

3.3.2.4 BACK CHANNELS, CONFIRMATION AND INTERRUPTION

 It is easy to think of conversation as a sequence of utterances: A says something, then B says something, then back to

A. This process is called turn-taking and is one of the fundamental structures of conversation. However, each utterance is

itself the result of intricate negotiation and interaction. Consider the following transcript:

The nods, grimaces, shrugs of the shoulder and small noises are called back channels. They feed information back

from the listener to the speaker at a level below the turn-taking of the conversation. The existence of back channels means

that the speaker can afford to be slightly vague, adding details until it is obvious that the listener understands

The back channel responses use a range of sensory channels.

So, as we restrict the forms of communication we lose the back channels. Even video communications tend to use, at

most, head and shoulder shots, so we lose some body movement and gestures. On the other hand, a larger view means

reduced detail, so we lose information whatever focus we choose.

 Audio-only links have to rely on purely verbal back channel responses – the little ‘yes’es. Surprisingly, despite the

loss of many back channels, people still cope well with these restricted media, and communication is still reasonably

effective. However, you may have had the experience, when speaking to someone on the telephone, of suddenly getting the

feeling that they have gone away, or the line has gone dead. This is likely to be when you have received insufficient back

channel responses.

Transcontinental telephones are especially problematic as they are often only half duplex, that is the sound only

goes in one direction at a time. So, while you are speaking, you can hear none of your partner’s back channel responses.

Text-based communication, in electronic conferencing, usually has no back channels whatsoever. Any

confirmation must be given explicitly in the listener’s next utterance. This may confuse an analysis of text-based

conversation as the utterances do not correspond simply to utterances in speech.

3.3.2.5 TURN-TAKING

 Turn-taking is the process by which the roles of speaker and listener are exchanged. Back channels are often a

crucial part of this process.

3.3.3 CONVERSATION

 We have looked at the low-level issues of speech and gesture during face-to-face conversation. We now turn to the

structure of the conversation itself.

Most analysis of conversation focusses on two-person conversations, but this can range from informal social chat

over the telephone to formal courtroom cross-examination. As well as the discipline of conversational analysis, there are

other sociological and psychological understandings of conversation.

However, the techniques, as ‘bor-rowed’ and used to study computer-mediated conversation, would not always find

favor with the purist from the discipline from which they originated!

There are three uses for theories of conversation in CSCW.

 First, they can be used to analyze transcripts, for example from an electronic conference. This can help us to

understand how well the participants are coping with electronic communication.

 Secondly, they can be used as a guide for design decisions – an understanding of normal human–human

conversation can help avoid blunders in the design of electronic media.

 Thirdly, and most controversially, they can be used to drive design – structuring the system around the theory.

3.3.3.1 BASIC CONVERSATIONAL STRUCTURE

 The most basic conversational structure is turn-taking. On the whole we have an alternating pattern: Alison says

something, then Brian, then Alison again. The speech within each turn is called an utterance. There can be exceptions to

this turn-taking structure even within two-party conversation.

19

For example, if there is a gap in the conversation, the same party may pick up the thread, even if she was the last

speaker. However, such gaps are normally of short duration, enough to allow turn-claiming if required, but short enough to

consider the speech a single utterance.

Often we can group the utterances of the conversation into pairs: a question and an answer, a statement and an

agreement. The answer or response will normally follow directly after the question or statement and so these are called

adjacency pairs.

We can look at Alison and Brian’s conversation above as two adjacency pairs, one after the other. First, Alison

asks Brian whether he knows about the film and he responds. Second, she suggests a time to go and he agrees. We can

codify this structure as: A-x, B-x, A-y, B-y, where the first letter denotes the speaker (Alison or Brian) and the second letter

labels the adjacency pair.

The requirement of adjacency can be broken if the pair is interposed with other pairs for clarification, etc.:

Brian: Do you want some gateau?

Alison: Is it very fattening?

Brian: Yes, very.

Alison: And lots of chocolate?

Brian: Masses.

Alison: I’ll have a big slice then.

This conversation can be denoted: B-x, A-y, B-y, A-z, B-z, A-x. Adjacency pair ‘x’ (‘Do you want some gateau?’–

‘I’ll have a big slice then’) is split by two other pairs ‘y’ and ‘z’. One would normally expect the interposed pairs to be

relevant to the outer pair, seeking clarification or determining information needed for the response.

Some would say that the adjacency pair is not just a basic structure of conversation but the fundamental structure.

It is clearly true that we normally respond to the most recent utterance. However, it is less clear whether a simple pairing up

of utterances is always possible or useful.

3.3.3.2 CONTEXT

 Take a single utterance from a conversation, and it will usually be highly ambiguous if not meaningless: ‘the uh with the

black cat – “The Green whatsit”’. Each utterance and each fragment of conversation is heavily dependent on context,

which must be used to disambiguate the utterance.

Two types of context within conversation:
 external context – reference to the environment

e.g., Brian's ‘that’ – the thing pointed to
 internal context – reference to previous conversation
 e.g., Alison's ‘that’ – the last thing spoken of

Referring to Things Deixis:

Often contextual utterances involve indexical: that, this, he, she, it

These may be used for internal or external context

Also descriptive phrases may be used:

 external: ‘the corner post is leaning a bit’

 internal: ‘the post you mentioned’

A specific form of context dependence is deictic reference. When accompanied by a pointed finger, an expression like

‘that post is leaning a bit’ is clearly dependent on external context. However, there are very similar uses of internal context:

Brian: (Points) That post is leaning a bit.

Alison: That’s the one you put in.

Brian’s utterance uses external context, whereas Alison’s very similar utterance uses internal context. Her ‘that’ refers to the

post Brian was talking about, not the one he is pointing at. To see this, consider the similar fragment:

Brian: The corner post is leaning a bit.

Alison: That’s the one you put in.

Real speech, probably more than the written word, is full of indexicals, words like ‘that’, ‘this’, ‘he’, ‘she’ and ‘it’.

Obviously when used in written text, like this, words such as these make use of purely internal context. In spoken speech any

20

of the above words can be accompanied by gestures or eyegaze for external context, or simply used, as Alison did, to refer to

previous things in the conversation.

Some of the words tend to be more likely to be external (‘that’, ‘this’) than others (‘he’, ‘she’), but you can easily think of

cases of both forms of use. Furthermore, the attachment of pronouns and other indexicals to the things they denote may

depend on the semantics of a sentence: ‘Oh no! Eustace has hit Bud. He’ll kill him, I know he will.’ Does the speaker mean

that Eustace will kill Bud, or vice versa? The answer depends on the speaker’s knowledge of Eustace and Bud. If Bud is a 22

stone (138 kg) trucker and Eustace has trouble lifting cans of beans then we interpret the sentence one way. If, on the other

hand, Eustace has a black belt in karate .

3.3.3.3 TOPICS, FOCUS AND FORMS OF UTTERANCE

 Given that conversation is so dependent on context, it is important that the participants have a shared focus. We have

addressed this in terms of the external focus – the objects that are visible to the participants – but it is also true of the internal

focus of the conversation.

 Context resolved relative to current dialogue focus

Alison: Oh, look at your roses : : :

Brian: mmm, but I've had trouble with greenfly.

Alison: they're the symbol of the English summer.

Brian: greenfly?

Alison: no roses silly!

 Tracing topics is one way to analyse conversation.

 Alison begins – topic is roses

 Brian shifts topic to greenfly

 Alison misses shift in focus … breakdown

3.3.3.4 BREAKDOWN AND REPAIR
Breakdown happens at all levels:

topic, indexicals, gesture

Breakdowns are frequent, but

 redundancy makes detection easy

(Brian cannot interpret ‘they're … summer’)
 people very good at repair

(Brain and Alison quickly restore shared focus)

3.3.3.5 CONSTRUCTING A SHARED UNDERSTANDING

 In a conversation, we know that our partner does not share our knowledge of the world. In addition, we know that our

partner will attempt to interpret our utterances. We thus frame our utterances based on this knowledge.

Two guiding principles for our utterances are that they should be relevant and helpful.

 To be relevant an utterance should further the current topic. This is because our partner is expecting an utterance

in this context and any sudden shift in our topic focus will make it more difficult for our partner to make sense of the

utterance. Such shifts happen in a conversation, but require less ambiguous utterances (as the common ground for that

particular utterance is lower).

 To be helpful, an utterance should be understandable to the listener and be sufficiently unambiguous given the

listener’s understanding. This requires the speaker to have a model of the listener’s understanding and vice versa. So

assuming he is being helpful, in saying ‘past the pub’, Brian implicitly assumes that there is a particular pub, which Alison

will recognize as being significant. It is no good the pub being significant to Brian alone; he must know that it will carry its

intended significance to Alison.

The ability to build such models is part of our social maturing. One of the key developmental steps for a child is from an

egocentric world view, where things are interpreted in relation to the child, to a social one where the child recognizes others’

viewpoints. At the age of 21/2, one of the authors’ children was interviewed by a linguistics researcher. At one stage the

conversation proceeded:

Child: We went to the doctor.

Researcher: Where was the doctor?

21

Child: Up the steps.

The researcher was clearly (in the context and to an adult) wanting to know whether the doctor was in a hospital or not. The

child’s answer would have been instantly meaningful to any local parent as the steps to the local doctor were a constant

problem for people with prams. However, the child was at that stage unable to phrase the utterance in a way suited to her

listener’s understanding. At a certain age children assume you know everything they know.

So, we see that conversation is an inherently social activity, based on a constructed shared understanding, and relying on

the participants’ models of one another. In addition, it depends on continuous interaction to correct misinterpretations and

to confirm understanding.

3.3.3.6 SPEECH ACT THEORY:

A specific form of conversational analysis

Utterances characterised by what they do … … they are acts
e.g. ‘I'm hungry’

 propositional meaning – hunger

 intended effect – ‘get me some food’

Basic conversational act the illocutionary point:

 promises, requests, declarations, …

Speech acts need not be spoken

e.g. silence often interpreted as acceptance …

Patterns of acts & Coordinator

 Generic patterns of acts can be identified

 Conversation for action (CfA) regarded as central

 Basis for groupware tool Coordinator

 structured email system

 users must fit within CfA structure

 not liked by users!

Fig 3.6

CFA in Action:

Simplest route 1–5:

Alison: have you got the market survey

 on chocolate mousse? request

Brian: sure promise

declareBrian: there you are assert

thanks

Alison:

 More complex routes possible, e.g., 1–2–6–3 …

Alison: have you got … request

Brian: I've only got the summary figures counter

Alison: that'll do accept

Not all speech acts need be spoken! Often a silence or an unspoken action forms a speech act. For example, let us imagine

that the market survey had not been handy and so Brian answers Alison’s request with ‘sure, I’ll get it later’. Later in the day

he finds an electronic copy of the report and then emails it to Alison. His action will be interpreted as asserting completion.

22

If Alison does not respond within a short time, her silence will be read as declaring satisfaction and the conversation will be

completed.

There are other generic conversation forms as well as CfA. These include:

conversation for clarification usually embedded within a CfA to clarify the required action (different from countering a

request);

conversation for possibilities looking toward future actions;

conversation for orientation building up a shared understanding.

In addition, the participants may indulge in meta-conversation, discussing the acts themselves, perhaps questioning the

legitimacy of an act: ‘I’m hungry’ . . . ‘well I’m not your skivvy, get your own food’. Also CfA is the most extensive and

well developed of the conversational forms. For example, the ‘creative’ conversation for possibilities will have a much less

structured form.

The importance of CfA is that actions are central to organizational administration.

3.3.4 TEXT BASED COMMUNICATION:

 Most common media for asynchronous groupware exceptions: voice mail, answer-phones. Familiar

medium, similar to paper letters but, electronic text may act as speech substitute.

There are four types of textual communication in current groupware:

discrete – directed message as in email. There is no explicit connection between different messages, except in so far as the

text of the message refers to a previous one.

linear – participants’ messages are added in (usually temporal) order to the end of a single transcript.

non-linear – when messages are linked to one another in a hypertext fashion.

spatial – where messages are arranged on a two-dimensional surface.

In addition, the communication may be connected to other shared computer artefacts,.

3.3.4.1 BACK CHANNELS AND AFFECTIVE STATE(PROBLEMS WITH TEXT):
No facial expression or body language

⇒ weak back channels

So, difficult to convey:

affective state – happy, sad, … illocutionary force – urgent, important, …

Participants compensate: ‘flaming’ and smilies

;-) :-(:-)

In addition to this loss of back channels, the speaker’s tone of voice and body language are of course absent. These normally

convey the affective state of the speaker (happy, sad, angry, humorous) and the illocutionary force of the message (an

important and urgent demand or a deferential request). Email users have developed explicit tokens of their affective state by

the use of ‘flaming’ and ‘smilies’, using punctuation and acronyms; for example:

:-) – smiling face, happy

:-(– sad face, upset or angry

;-) – winking face, humorous

LOL – laughing out loud.

People tend to use stronger language in email than in face-to-face conversation, for example they are more likely to be

highly and emotively critical. On the other hand, they are less likely to get emotionally charged themselves. These

apparently contradictory findings make sense when you take into account the lack of implicit affective communication. The

participants have to put this explicitly into their messages – thus accounting for their stronger language. At the same time,

they are emotionally ‘distanced’ by the text from their conversants and have the conversation spread out over time. In

addition, they do not have to express their affective state by acting emotionally. Together these factors contribute to a more

heated conversation by calmer conversants!

23

Figure 3.6 Conferencer screen shot showing text transcript and pin-board

3.3.4.2 GROUNDING CONSTRAINTS:

 Establishing common ground depends on grounding constraints
contemporality – instant feedthrough simultaneity – speaking together

 sequence – utterances ordered

Often weaker in text based communication

 e.g., loss of sequence in linear text

Clark and Brennan [71] describe the proper-ties of these channels in terms of grounding constraints. These include:

cotemporality – an utterance is heard as soon as it is said (or typed);

simultaneity – the participants can send and receive at the same time;

sequence – the utterances are ordered.

These are all constraints which are weaker in text-based compared with face-to-face interaction.

3.3.4.3 TURN-TAKING

 We saw that one of the fundamental structures of conversation was turn-taking. The last transcript was an example of

a breakdown in turn-taking. In fact, such breakdowns are quite rare in two-party electronic conversations and are quickly

corrected. What is more surprising is that such breakdown so rarely occur during letter writing, which is in some ways

similar.

 However, when conversing by letter, one has an objective timescale with which to work out whether one’s fellow

conversant ought to have replied. One therefore does not send a second letter unless the conversant is very remiss in replying

to the first missive.

 However, in synchronous text-based conversation, the time taken to compose a message (from 30 seconds to

several minutes) is far greater than the few seconds which feel ‘immediate’ on a computer system, but is too short to be able

to reason about rationally. The replies always seem a long time coming and hence one is tempted to send a ‘follow-on’

message.

 Despite the occasional breakdown, most observers of two-party text-based inter-action report an overall turn-

taking protocol, which exhibits many of the structures of normal conversation including adjacency pairs. However, when we

look at three or more participants, turn-taking and adjacency pair structure begin to break down completely.

 In a pair of participants, turn-taking is simple; first one person says something, then the other. The only problem is

deciding exactly when the exchange should happen. With three or more participants, turn-taking is more complex. They

must decide who should have the next turn. This is resolved by face-to-face groups in a number of ways.

 First, the conversation may, for a period, be focused on two of the parties, in which case normal two-party turn-

taking holds.

 Secondly, the speaker may specifically address another participant as the utterance is finished, either implicitly by

body position, or explicitly: ‘what do you think Alison?’

24

 Finally, the next speaker may be left open, but the co temporality of the audio channel allows the other

participants to negotiate the turn. Basically, whoever speaks first, or most strongly, gets in.

 These mechanisms are aided by back channels, as one of the listeners may make it clear that she wants to speak. In

this case, either the speaker will explicitly pass the turn (the second option above), or at least the other listeners are expecting

her to speak. In addition, the movement between effective two-party conversation (the first option) and open discussion will

be mediated by back channel messages from the other participants.

In an unstructured text-based conversation the third option is not available, nor, of course, are the back channels.

Paired conversation is quite common and the second option, explicitly naming the next speaker, is possible. However, this

naming is not particularly natural unless a direct question is being asked. In both options, the absence of back channels

makes it difficult for another listener to interrupt the conversation.

Some systems use more structured mechanisms to get round these problems, perhaps having a round-

robin protocol (each participant ‘speaks’ in turn) or having a queue of turn-requests. Whether the strictures of

such mechanisms are worse than the problems of occasional breakdown depends very much on the context and is a

matter of opinion.

Loss of Sequence:

Network delays or coarse granularity ⇒ overlap

1. Bethan:how many should be in the group?

2. Rowena: maybe this could be one of the 4 strongest reasons

3. Rowena: please clarify what you mean

4. Bethan:I agree

5. Rowena: hang on

6. Rowena: Bethan what did you mean?

Message pairs 1&2 and 3&4 composed simultaneously

– lack of common experience

Rowena: 2 1 3 4 5 6

Bethan: 1 2 4 3 5 6

N.B. breakdown of turn-taking due to poor back channels

3.3.4.4 CONTEXT AND DEIXIS

 Utterances are highly ambiguous and are only meaningful with respect to external context, the state of the world,

and internal context, the state of the conversation. Both of these are problems in text-based communication.

The very fact that the participants are not co-present makes it more difficult to use external context to

disambiguate utterances. This is why many groupware systems strive so hard to make the participants’ views the same; that

is, to maintain WYSIWIS (‘what you see is what I see’).

Whatever the means of direct communication, remote participants have difficulty in using deictic reference. They

cannot simply say ‘that one’, but must usually describe the referrant: ‘the big circle in the corner’. If their displays are not

WYSIWIS then they must also ensure that their colleague’s display includes the object referred to and that the description is

unambiguous.

Asynchronous participants have even more problems with deixis as there is no opportunity for their colleagues to

clarify a reference (without extremely lengthy exchanges). Furthermore, the objects referred to by a message may have

changed by the time someone comes to read it! Similarly, group pointers are not really an option, but one can use methods of

linking the conversation to its context, either by embedding it within the objects as annotations or by having hypertext links

between the conversation and the object.

The trouble does not end with external context; there are also problems with deictic reference to internal context. In speech,

the context is intimately connected to linear sequence and adjacency. As we have seen, even in linear text transcripts,

overlap breaks the strict sequentiality of the conversation, and thus causes problems with indexicals and with context in

general.

 Alison: Brian’s got some lovely roses.

 Brian:I’m afraid they’re covered in greenfly.

 Clarise: I’ve seen them, they’re beautiful.

25

Brian and Clarise both reply to Alison’s message at the same time. However, in the transcript, where Clarise says ‘they’ this

appears, at first, to refer to the greenfly. Brian is expecting a consoling reply like ‘I’ve seen them. Have you tried companion

planting?’ Of course, the breakdown quickly becomes apparent in this case. The problem is not so much that people cannot

recover from such breakdowns, as in the extra burden the recovery puts on the participants. If these messages are being sent,

say, between continents, network delays and time differences may limit exchanges to once a day. Even one or two messages

recovering from breakdown are then a major disaster.

Most email systems and some bulletin boards lack any implied sequentiality and thus any context to the messages. The users

(ever inventive) get round this by including copies of previous messages in their replies. This is only partially effective.

 Hypertext-based systems avoid the implied sequentiality of a linear transcript. In the above example, both Brian

and Clarise replied to Alison’s message at the same time. In a hypertext these would form parallel conversations. This is

shown in Figure 3.7, where in addition Clarise has sent a second message offering advice on Brian’s greenfly. The use of

‘they’ in Clarise’s message (3) is now perfectly clear.

 Figure 3.7 Hypertext conversation structure

3.3.4.5 PACE AND GRANULARITY:

Pace of conversation – the rate of turn taking

face-to-face – every few seconds

telephone – half a minute

email – hours or days

face-to-face conversation is highly interactive

 initial utterance is vague

 feedback gives cues for comprehension

lower pace ⇒ less feedback ⇒ less interactive

Coping Strategies:

People are very clever!

they create coping strategies when things are difficult

Coping strategies for slow communication attempt to increase granularity:

eagerness – looking ahead in the conversation game

Brian: Like a cup of tea? Milk or lemon?

multiplexing – several topics in one utterance

Alison: No thanks. I love your roses.

Conversation Game:
Conversation is like a game

Linear text follows one path through it

Participants choose the path by their utterances

Hypertext can follow several paths at once

26

Figure 3.8 The conversation ‘game’

3.3.4.6 LINEAR TEXT VS. HYPERTEXT

 Considerations of potential overlap suggest that hypertext-based communications may be better suited as a text-

based communication medium. Similarly, the problems of pace may be partially solved in a hypertext. Multiplexed

messages can be represented as updates to several parts of the hypertext, thus reducing the likelihood of breakdown and lost

topics. In addition, if the messages themselves can be mini-hypertexts, then eager messages listing several possible courses

of action can be explicitly represented by the message.

Hypertext has its disadvantages. Even static hypertexts, which have been carefully crafted by their authors, can be difficult

to navigate. A hypertext that is created ‘on the fly’ is unlikely to be comprehensible to any but those involved in its creation.

For the asynchronous reader trying to catch up with a conversation, a linear transcript is clearly easier, but it is precisely in

more asynchronous settings where overlap in linear text is most likely to cause confusion.

We can see that there is no best solution, with possibly the best course in many situations being linear transcripts arranged by

topic, with some automatically generated indication of overlap.

3.3.5 GROUP WORKING

So far we have been principally looking at the properties of direct communication, and largely two-party conversations.

Group behavior is more complex still as we have to take into account the dynamic social relationships during group working.

We will begin by looking at several factors which affect group working, and then discuss the problems of studying group

working. This section deals with groups that are actively working together, rather than the organizational issues considered

in the previous chapter, which are primarily concerned with the long-term structures within which people work.

3.3.5.1 GROUP DYNAMICS:
Work groups constantly change:

– in structure – in size

Several groupware systems have explicit rôles

 But rôles depend on context and time

e.g., M.D. down mine under authority of foreman

 and may not reflect duties

e.g., subject of biography, author, but now writer

 Social structure may change: democratic, autocratic and group may fragment into sub-groups

Groupware systems rarely achieve this flexibility

 Groups also change in composition

27

⇒ new members must be able to `catch up'

3.3.5.2 PHYSICAL LAYOUT(PHYSICAL ENVIRONMENT):

Face-to- face working radically affected by layout of workplace

e.g. meeting rooms:

 recessed terminals reduce visual impact

 inward facing to encourage eye contact

 different power positions

Figure 3.9 Power positions traditional meeting room

Figure 3.10 Power positions augmented meeting room

3.3.5.3 DISTRIBUTED COGNITION:

Traditional cognitive psychology in the head

Distributed cognition suggests look to the world

Thinking takes place in interaction

 with other people

 with the physical environment

Implications for group work:

 importance of mediating representations

 group knowledge greater than sum of parts

 design focus on external representation

**

3.4 HYPERTEXT, MULTIMEDIA AND WWW:

Hypertext allows documents to be linked in a non-linear fashion.

 Multimedia incorporates different media: sound, images, video.

 The world wide web is a global hypermedia system.

 Animation and video can show information that is difficult to convey statically.

 Applications of hypermedia include online help, education and e-commerce.

 Design for the world wide web illustrates general hypermedia design, but also has its own special

problems.

 Dynamic web content can be used for simple online demonstration or for complete web-based business

applications.

 Text-imposes strict linear progression on the reader

Hypertext - not just linear
• non-linear structure

o blocks of text (pages)

o links between pages create a mesh or network
users follow their own path through information

28

3.4.1 UNDERSTANDING HYPERTEXT

3.4.1.1 HYPERTEXT DEFINITION – TEXT, HYPERTEXT AND MULTIMEDIA

Text:

 All the traditional texts share a common linear nature. This linearity is partly because of the nature of the media used –

papyrus scroll, painted frieze or paper book – but perhaps more significantly because we are creatures in linear time. We are

natural story-tellers and natural story-hearers.

 During some forms of exploratory learning the learners may want to follow their own paths through material: each one

delving into details in different parts. Experts in a subject, too, may well want to remind themselves of some particular issue

or fact.

 Hypertext attempts to get around these limitations of text by structuring it into a mesh rather than a line. This allows a

number of different pages to be accessed from the current one, and, if the hypertext is well designed, the user should find it

easier to follow his own particular idea through the mesh rather than being forced down one route.

 Typically, hypertext systems incorporate diagrams, photographs and other media as well as text. Such systems are

often known as multimedia or hypermedia systems, although the three terms are often used interchangeably.

 A hypertext system comprises a number of pages and a set of links that are used to connect pages together. The links

can join any page to any other page, and there can be more than one link per page. Thus a hypertext document does not

simply start a linear progression and follow it to an end, but goes in lots of different directions, some of which terminate,

while others link back into different parts of the document .

Fig 3.11 Typical Structure of linear text and hypertext

3.4.1.2 RICH CONTENT

3.4.1.2.1 ANIMATION
 adding motion to images

– for things that change in time
← digital faces – seconds tick past or warp into the next
← analogue face – hands sweep around the clock face

← live displays: e.g. current system load

– for showing status and progress

← flashing carat at text entry location
← busy cursors (hour-glass, clock, spinning disc)

– for data visualisation

← abrupt and smooth changes in multi-dimensional data
 visualised using animated, coloured surfaces

← complex molecules and their interactions more easily understood when they are rotated and

viewed on the screen
3.4.1.2.2 VIDEO AND AUDIO

 now easy to author
– tools to edit sound & video and burn CDs & DVDs

 easy to embed in web pages

– standard formats (QuickTime, MP3)
 still big … but getting manageable

– memory OK … hand held MP3 players, TiVo etc.

29

– but download time needs care – tell users how big!

 very linear
hard to add ‘links’ often best as small clips or background

3.4.1.2.3 COMPUTATION, INTELLIGENCE AND INTERACTION

 More interactive hypermedia may contain embedded games or applications. For example, Figure 3.12 shows a puzzle

from the website of one of the authors (Alan), a sort of 2D Rubik’s cube that you can play online. Hypermedia running on

the user’s own computer may interact closely with other applications; for example, on a

Figure 3.12 Interacting with hypertext – Professor Alan’s puzzle square. Screen shot frame reprinted by permission from

Microsoft Corporation

Macintosh HyperCard stacks can control applications using AppleEvents, or on a Windows platform hypermedia can include

ActiveX components.

Whilst the ‘text’ in hypertext suggests passive content under the user’s control, some hypermedia may contain more

intelligent components or agents actively working to shape the experience for the user. For example, some educational

hypertexts adapt their content depending on a model of the learner. Similarly e-commerce sites may suggest additional

products to buy depending on your previous purchasing and browsing behavior.

3.4.1.3 DELIVERY TECHNOLOGY

3.4.1.3.1 ON THE COMPUTER

Some hypertexts are downloaded or installed permanently on a computer. However, with media-rich hypertexts

containing substantial graphics, video and audio clips it may be impractical to store everything on hard disk. Also, for copy-

right protection, some systems will deliberately not allow themselves to be copied from their original distribution media.

Many hypermedia systems are supplied on CD-ROM. This has the advantage of reasonably large capacity (650–

700 Mbytes), but access is slower than with installed systems. For highly dynamic material, such as educational media, a

special player is installed; alternatively, material such as software documentation may use a standard format such as web

pages.

DVD delivered material is interesting as it is not text enriched with video, but instead a movie that has been ‘made

interactive’.

3.4.1.3.2 ON THE WEB

 The world wide web is the best-known multimedia hypertext system of all. The world wide web offers a rich

environment for the presentation of information. Documents can be constructed that are very different from paper versions;

basic text can be augmented through the use of hypertext links to other documents, while graphics can easily be incorporated

as pictures, photographs, icons, page dividing bars, or backgrounds. Pages can also have hypertext links embedded into

different regions, which take the user to a different page or graphic if they are clicked on; these are known as active

image maps. These features allow web pages to become interactive, acting as the interface to the information as well as its

30

holder. Dynamic material in the form of movies and sounds is also available to the designer; all these features push web page

design well away from the conventional paper-based kind.

Designing web pages is a developing art, and should be viewed in much the same way as designing any other interactive

system. Good pages have been developed with the reader as the focus, and act as effective interaction tools or presentation

tools to allow the user to obtain the information he is looking for most effectively.

The web allows the user to browse documents and follow links transparently, with the underlying system taking care of the

details of fetching the data from different parts of the world. Theoretically, as far as the user is concerned, any page can be

reached as easily as any other; geographical location ceases to become important, whereas linking by content is crucial. The

ability for anyone to publish information on the web is one factor in its success as a multimedia system, but the fact that any-

one can create a page and, by linking it to others already in existence, immediately integrate their opinions seamlessly into

the information space is another.

3.4.1.3.3 ON THE MOVE

 Mobile phones, PDAs (personal digital assistants), and notebook computers have all increased the demand to have

hypermedia available on the move.

 Notebook computers can use just the same mechanisms as desktop computers, using CD-ROM or DVD for standalone

material, or connecting to the web through wireless access points or through modems linked to mobile phone networks.

However, the fact that the computer is mobile means that location can be used as a key into context-aware hypermedia

showing different content depending on location.

 PDA access poses different problems. They often have standard web browsers, but of course on a substantially smaller

screen. This may mean designing special pages or being especially careful to design ones that resize well. Because PDAs are

often not network connected there are also systems to allow access to information when disconnected.

 By nature, mobile phones are (nearly) always connected to a network. However, memory and screen size are even more

constrained. Some phones allow download-able applets so that small dynamic applications can be used. More web-like

content can be accessed via WAP (wireless application protocol), which, like HTTP (hyper-text transfer protocol) for the

web, gives access to remote servers. WAP content can be produced as static or dynamic content using a mark-up language

called WML, which is a simplified version of HTML (hypertext markup language). This allows hyperlinks like the web

and even simple images, but due to the small screen size most pages consist mainly of small amounts of information or

simple lists of links.

3.4.1.4 APPLICATION AREAS

3.4.1.4.1 RAPID PROTOTYPING

 HyperCard on Macintosh computers has been very influential as a basis for experimental hypertext systems.

HyperCard uses the metaphor of a card index, around which the user can navigate. Each card can hold text, diagrams,

photographs, bitmaps and so on, and hot-spots on the cards allow movement between cards. Cards may also contain forward

and backward buttons and a home icon, to allow the user to move sequentially and start from scratch respectively.

HyperCard can be used for a range of applications including information management and teaching.

However, HyperCard’s simple scripting language and easy to produce graphical interfaces meant it was also used

extensively as a rapid prototyping tool for generating interactive systems. In fact, HyperCard stacks for both single-user

and networked applications are available from the book website.

For similar reasons, other hypermedia tools such as Macromedia Flash and Director are often used to produce

dynamic interface mock-ups or even fully functioning systems. The web, too, is used like this, both to deliver applications

and also as a way of mocking up an application interface as a series of storyboard web pages.

3.4.1.4.2 HELP AND DOCUMENTATION

 allows hierarchical contents, keyword search or browsing
 just in time learning

← what you want when you want it
← (e.g. technical manual for a photocopier)

– technical words linked to their definition in a glossary

31

links between similar photocopiers

3.4.1.4.3 EDUCATION AND E-LEARNING
o animation and graphics allow students to see things happen
o sound adds atmosphere and means diagrams can be looked at while hearing explanation
o non-linear structure allows students to explore at their own pace
o e-learning

 letting education out of the classroom!!

e.g. eClass

3.4.1.4.4 COLLABORATION AND COMMUNITY

 Although strictly not hypertext, the web has become a central platform for collaborative applications and community.

These use the hypertext structure of the web to structure and access shared resources and message areas. For example

Yahoo! Groups (groups.yahoo.com) allows mailing lists, shared images (such as family photo albums), web archives of the

mailing list and chat, all accessed through a web interface.

 Establishing a sense of community can be very important on websites as it is one way to ensure loyalty and get visitors

to return. This may involve explicit community features such as chat areas, or may simply be a matter of using a design,

language and image that suggests a site which is open and listening to ‘readers’.

3.4.1.4.3 E-COMMERCE

 For some companies the web is simply another sales opportunity. Many readers will have used online stores such as

Amazon or bought from an auction site such as eBay. Hypertext’s use of hierarchies, links, images and so on, makes it ideal

for displaying certain kinds of product. Actual buying and selling requires not only security at the level of the networks,

websites, etc., but also trust. When you walk into a shop you can see the person you are dealing with, and the fact that it is

physically there today gives you confidence that it will be there tomorrow if anything goes wrong. How to build and ensure

this trust is an active area in HCI research.

3.4.2 FINDING THINGS

3.4.2.1 LOST IN HYPERSPACE

Although the non-linear structure of hypertext is very powerful, it can also be confusing. It is easy to lose track of

where you are, a problem that has been called ‘lost in hyperspace’.

There are two elements to this feeling of ‘lostness’.

 The first is cognitive and related to content. In a linear text, when a topic is being described, the writer knows what the

reader has already seen. In a hypertext, the reader can browse the text in any order. Each page or node has to be written

virtually independently, but, of course, in reality it cannot be written entirely without any assumption of prior knowledge. As

the reader encounters fragmentary information, it cannot be properly integrated, leading to confusion about the topic.

 The second is related to navigation and structure. Although the hypertext may have a hierarchical or other structure, the

user may navigate by hyperlinks that move across this main structure. It is easy to lose track of where you are and where you

have been.

 The solution to the former issue is to design the information better. The solution to the latter is to give users better

ways of understanding where they are and of navigating in the hypertext. To say ‘the solution’ is disingenuous – there is

no simple ‘solution’. If we want to provide information that allows complex, unplanned, non-linear access, there will

probably always be problems. However, good design can help!

3.4.2.2 DESIGNING STRUCTURE

 In a paper format one is stuck with a single structure, which can lead to tensions: for example, the fact that in this

book structural design is discussed in several places. As another example, imagine a car mechanic using a manual. She

might want to use the classical breakdown into transmission, fuel system, etc., while fault finding, but if she were

dismantling the engine it might be more useful to look at the car components in terms of physical location.

If multiple structures are used, you have to consider what to do about the common material.

 For example, if we examine a car hypermedia text under ‘engine compartment’ and get to the fuel pump, this

would also appear in the functional view under ‘fuel system’. Such common elements may be replicated. This has the

32

advantage that the material can be presented in ways that make sense given their context, but it can also lead to

inconsistencies.

 In all cases it is important that the structure and the naming of parts is meaningful for the user. In a more detailed and

theoretical approach to the ‘knowing where you are going’ principle, Pirolli and others have developed information foraging

theory. This uses an analogy with foraging animals searching for patches of food and trying to make decisions about when to

move to a different area or stay with the food available, and, if they move, where to go. This is likened to the way an

information seeker browses, making decisions about whether to stick with the information available or spend time looking

for more, and, if more is needed, deciding where to seek it.

3.4.2.3 MAKING NAVIGATION EASIER

 No matter how well designed the site structure is, there will still be problems: because the user does not understand the

structure; or because the user has individual needs that the designer has not foreseen; or because even a good structure is not

perfect. However, there are various things that can make it easier for users.

 One solution is to provide a map of the hypertext document, identifying the current position of the reader within it.

Links to home or end points can then be identified and the user is less likely to get lost. This may be a separate part of the

hypertext; for example, some websites have a site map link leading to a special page, and many help systems have a table of

contents view. Alternatively, the site map can be woven into the layout of the document; for example, some sites have an

outline-style sidebar listing the main sections and drilling down to the current location. This acts both as an indication of

where you are in the site and as a constant reminder of the overall site structure.

 Another type of hypertext takes the form of ‘levels of access’ to a document. Different levels of access privilege ‘see’

different amounts of information.

A document structured in this way may provide one level of access that gives only a brief overview of the topic. The next

level of access presents a fuller description of the system, while the next level may also include information regarding the

precise meaning of technical terms used in the system. The final level of access may add historical information and such

like. The user can choose at which level he wants to read the document, cutting out irrelevant information while obtaining all

the necessary details. Such a document tends to be linear in nature, which makes navigating and printing it easier, but

removes the user’s choice in structuring his progress through it.

 Once information has been retrieved, a paper version is often needed. Printing a document requires the pages to be in a

particular order, but hypertext does not support the concept of one single order. This is against the ethos of hypertext, which

intends the user to structure the information in the way that suits him best. It can therefore be difficult to get a hard copy of

the information that is required.

 Although there is no simple way to linearize a hypertext, one can at least make it possible to print individual linear parts,

whether single pages or groups of linearly linked pages. In general, you should not rely on the print facility of a browser as

this is printing a page designed for on-screen viewing. You may notice websites offering printer friendly pages. These may

be in a different format such as PDF, or may simply be web pages without side bar navigation aids, etc.

3.4.2.4 HISTORY, BOOKMARKS AND EXTERNAL LINKS

Hypertext viewers and web browsers usually have some sort of history mechanism to allow you to see where you have

been, and a more stack-based system using the ‘back’ button that allows you to backtrack through previously visited pages.

The back button may be used where a user has followed a hyperlink and then decided it was to the wrong place, or

alternatively, when browsing back and forth from a central page that contains lots of links. The latter is called hub and

spoke browsing. In fact, in studies of web browsing the back button accounted for 30% of all navigation actions. Other

studies have shown frequent revisiting of pages during a single browsing session.

Although the back button is used extensively, it is used relatively little to go back more than one step. For error correction

this makes sense, but for general revisiting one might think that moving back several steps would be common. Possibly, one

reason for this is confusion about the meaning of the back button; indeed a formal comparison of back and history

mechanisms in four different hypertext and web browsers found that the operation of back and history were subtly different

in each.

For longer-term revisiting, browsers typically support some form of bookmarking of favorite pages. Both this and, on the

web, external links from other people’s sites mean that users may enter your hypertext at locations other than the top

level or home page. On the web this is called deep linking. Many websites rely on the user remembering where they have

come from to make sense of a page. If a page does not adequately show where it fits, then a user coming to it from outside

may have no idea what site it is from, or why they are reading the material. Furthermore, if the original site depended on the

33

user pressing ‘back’ to return to higher levels of the site hierarchy it may be impossible for a visitor to find the rest of

your site at all!

All pages should therefore make clear where they belong and have links into the full site structure.

Framed websites are particularly difficult. The material you want to bookmark or link to may be one of the frame

content pages, but the URL you can see or bookmark is that of the overall frameset. This may either discourage linking to

the site or, if circumvented, it may mean linking directly to the content of one of the frames, which is then very likely to lack

sufficient context, being designed to be seen within the frameset.

Search engines, too, may generate links to individual frames in a frame-set. Many web style guides heavily discourage

the use of frames for this reason. If the site is designed using a development tool that supports page templates, or is being

dynamically generated, there is rarely any need for frames as most of the effects can be obtained using other page

formatting.

Very occasionally you may want to discourage deep linking; for example, if the framed page is more of an interactive

application or you know the inner structure is unlikely to stay constant. In such cases you can include a small piece of script

in the inner framed pages that makes them redirect to the outer frame if they are ever opened ‘bare’ in a window. This means

that if a site or a search engine does link into the inner frames, following the link takes the user to the full, framed site.

3.4.2.5 INDICES, DIRECTORIES AND SEARCH

 A hierarchical table of contents structure, many help systems, hypertexts, and for that matter paper books, have some

kind of index. Note that an index is not a complete list of all words in a document. If this were the case then the index for

this book would be as big as the rest of the book! The words in an index are chosen because they are significant key phrases

or words with a domain meaning, and not every occurrence of a word is indexed, only those deemed in some way important.

The main difference between an electronic index and a paper one is that with the paper index you have to physically look

up the page after finding the word in the index, whereas in an electronic index the links are ‘live’ so you can simply click

to the content.

 On the web an index would be very big (!); however, directory services such as Yahoo! (www.yahoo.com) or the Open

Directory Project (ODP) (www.dmoz.org) can be seen as a form of index. The main difference is that while an index is

simply an alphabetical list of keywords, web directories give a hierarchical categorization to sites. The categorization is done

either by self-submission, or, in the case of quality directories such as ODP or Yahoo!, by experts in the relevant field.

 For exhaustive searching by keywords, some kind of automated search is required. In the case of a standalone

hypertext, the viewer application may do this either by using a pre-computed electronic index of all word occurrences

used by the hypertext, or by scanning it on demand. The latter will take longer for each search, but may be more effective if

the hypertext is not too big or the material is rapidly changing. Where the hypertext is generated from a database, the search

may be performed on the underlying data rather than the generated pages.

 In the case of the web the content is dynamically changing, but it would be impossible to scan the whole web

every time you wanted to find anything! Search engines such as Google or AltaVista use web crawling. Starting from an

initial collection of pages they look for all links from these pages. These links are followed and the new pages reached are

scanned, and so on. As pages are visited, an index is built of which words occur in which pages.

The search engines do not keep a copy of every page visited, but may just keep the title and the first hundred or so words

on each page. Even the index is vast and so the most common words are usually not indexed; these are called stop words.

When you do a search, the search engine uses the index and the summary information to construct the results page with links

to the actual pages. Because it is using the page summaries and not looking at the pages themselves, it is possible that a page

may have been removed or changed since the index was constructed.

The web is enormous and so the number of pages containing a given word is enormous. Web search engines allow

you to search for several words at once or for exact phrases, or, with Boolean searches, to specify using logical and/or

options what is required: for example, ‘engine AND NOT car’.

Even when looking for multiple words or Boolean queries, the number of results may be in the tens or hundreds of

thousands. So search engines need some way to rank pages. Some use simple, content-based measures such as the

number of times the requested words occur, whether they occur in the title or body, whether they occur near the beginning or

end of the page. Some search engines keep track of how many times users click through for specific pages and so can build

up a model of popularity. In addition, some search engines sell the right to be top, based on keywords, or have a special

advertisers or sponsors links section.

Some specialist searches, for example for video, books, etc., and even some more general-purpose search

engines, allow you to rate pages you have visited. Ratings are then used to rank the more popular pages for future visitors.

These are called recommender systems. As well as explicit recommendations, e-commerce sites often track your browsing

http://www.yahoo.com/
http://www.dmoz.org/

34

on the site and use this to build a profile of which users are similar to you. The books or goods they purchased may then be

suggested to you.

When designing web pages, it is possible to make them more ‘search engine friendly’ by adding ‘META’

tags in the head section of the web page, in particular keywords and description, as well as a relevant ‘TITLE’ tag. In

the early days, people tried to fool search engines by including invisible lines with lots of popular keywords at the top

of their document.

Search engines have trouble scanning sites with many generated pages, especially if they are accessed through a

search box only, for example a dictionary or thesaurus. There are many large data sets available on the web, often public

domain or freely accessible, which contain high-quality information – often better quality than any old web page – but

are not easy to find unless you know the site. This has been called the hidden web and some estimates say that it is an

order of magnitude larger than the visible web. Currently, there are no accepted ways to link such material into broader web

searches although some products.

3.4.3 WEB TECHNOLOGY AND ISSUES

3.4.3.1 BASICS

The web consists of a set of protocols built on top of the internet that, in theory, allow multimedia documents to

be created and read from any connected computer in the world. The web supports hypertext, graphics, sound and movies,

and, to structure and describe the information, uses a language called HTML (hypertext markup language) or in some cases,

XML (extensible markup language). HTML is a markup language that allows hypertext links, images, sounds and movies

to be embedded into text, and it provides some facilities for describing how these components are laid out. HTML

documents are interpreted by a viewer, known as a browser; there are many browsers, and each can interpret HTML in

subtly different ways, or support different levels of functionality, which means that a web page viewed through one browser

can look very different from the same page viewed through another. The web requires no particular multimedia

capabilities from the machines that run the browsers; for example, if sound is unavailable on a particular machine, then

obviously no sound is heard but the browser still displays the text happily.

The web owes its success to many factors, including the robustness and (relative) ease of use offered by popular

browsers from the very first graphical browser Mosaic, and continued in commercial browsers such as Netscape Navigator,

Microsoft Internet Explorer and Opera. These offer a graphical interface to the document, controlled by the mouse.

Hypertext links are shown by highlighting the text that acts as the link in an alternative color, and are activated by

clicking on the link. A further color is used to indicate a link that has already been visited. Hypertext links can also be

embedded into regions within an image.

Although the browser contains most of the functionality required to view a web document, supporting text and

graphics in an integrated package, special file formats and media, including some movie formats, may require additional

plug-ins or helper applications.

As well as static web content such as text and images, many pages are dynamic. for example, they may be

generated from data held in databases, respond to individual information entered into forms, or include dynamic elements

such as Java applets.

3.4.3.2 WEB SERVERS AND WEB CLIENTS
• the web is distributed in

 different machines far across the world
 pages stored on servers
 browsers (the clients) ask for pages sent to and fro across the internet

Whereas a conventional PC program runs and is displayed on one computer, the web is distributed. Different parts of it

run on different computers, often in different countries of the world. They are linked, of course, by the internet, an enormous

global computer network

The pages are stored on web servers that may be on a company’s own premises or in special data centers. Because they

are networked, the webmaster for a site can upload pages to the server from wherever she is.

For example, the web pages for www.hcibook.com are stored in a data center several thousand miles from where any of

the authors live!

Your machine, the PC running the web browser, is called a client because it wants the pages from the servers. When you

click on a link your web browser works out the full URL of the page it needs: say

http://www.hcibook.com/

35

‘http://www.hcibook.com/e3/authors.html’. It splits this into parts. The first part is the protocol ‘http’ which says how it talks

to the server (other alternatives include ‘ftp’). The second part ‘www.hcibook.com’ is the host name, that is the name of the

web server containing the requested page. The last part ‘/e3/authors.html’ gives the particular file on the site. The browser

then establishes a connection to the required web server (in this case ‘www.hcibook.com’), and sends a message, formatted

using the HTTP protocol, to the web server, which then finds the requested html file (or image, or other file type) and returns

it to the browser, which then displays it to you.

If the page contains images the same process is repeated for each image, and if the page is a framed one for each

frame within the page.

3.4.3.3 NETWORK ISSUES

 QoS (quality of service)
– bandwidth

← how much information per second(Network capacity is called bandwidth)

– latency

← how long it takes (delay)

There is also the time it takes for a message to get across the network from your machine to the web server and back. This

delay is called latency. Latency is caused by several factors – the finite speed of electrical or optical signals (no faster than

the speed of light), and delays

Figure 3.13 Bandwidth, latency and jitter

at routers along the way that take messages from one computer network and pass them on. This latency may not always be

the same, varying with the exact route through the network traveled by a message, the current load on the different routers,

etc. Variability in the latency is called jitter (see Figure 21.7).
– jitter

← how consistent is the delay(Variability in the latency is called jitter)

– reliability

← some messages are lost
 – connection set-up

Delivering WAP content – balancing usability and feedback

Because of the tiny screens on phones it is difficult to scroll through a long WAP page. However, if every link involved

going back to the WAP server the feedback would be very slow. For this reason WML divides WAP content into stacks of

notes. For the user browsing the content, the note is the parallel of the normal web page. A link may be to a note in the same

stack or one in a different stack; the user is largely unaware of which it is. However, when you request a note in a stack the

whole stack is downloaded to the WAP browser on your phone. This means that links to notes in the same stack have much

faster feedback. By carefully arranging content within stacks and notes, the overall user experience can be improved.

3.4.4 STATIC WEB CONTENT

3.4.4.1 THE MESSAGE AND THE MEDIUM

 Excellent page design can make useless material look attractive, but it still remains useless material. On the other hand,

poor design can mean that excellent material is never seen by potential readers, as they have become bored, or intolerant of

the medium, or confused, or for a host of other reasons have aborted their attempts to download and view the information.

Pages do have to look immediately interesting and attractive if people are to spend time, effort and, because of the

communication costs, money, in viewing them; the user-centered nature of the medium makes this imperative. This is in

marked contrast to television or cinema or other dynamic media, which are not under any direct user control, where

http://www.hcibook.com/e3/authors.html
http://www.hcibook.com/
http://www.hcibook.com/

36

information is presented to a passive audience. With web documents, people have actually to want to see the information,

and make an effort to retrieve it, which clearly must have an influence on design.

 Whatever is being presented, underlying all the comments made on good and bad design, the fundamental message is that,

for the user group or groups who are targeted, the content should be worth reading.

 When it is likely that a user will require a paper copy of the information made available over the web, ideally they should

be able to download it in one go as single complete file, with the same information content but possibly a different layout.

Paper does not have the same inbuilt hyper textual and active capabilities as the web page, and will be accessed in a

predominantly linear fashion.

3.4.4.2 TEXT

 Because web pages are displayed on many different machines, there are only a small set of fonts that can be guaranteed to

be available: a standard font and a type-writer font (e.g. courier) with bold and italic versions in different sizes. However, it

is possible to specify preferred fonts and many of these such as Arial, Verdana or Comic Sans are available on most web

platforms. The difficult thing is to balance fine tuning the appearance of the text on one platform with making it readable on

all.

 The various structured styles such as headings allow the web designer to create material that will lay out passably on all

platforms. But these offer a fairly coarse level of control. The size and boldness of the heading should be chosen carefully.

for example, huge dark fonts on a page can look loud and brash.

 There is an increasing desire to have fine control. Cascading style sheets (CSS) allow you to specify fonts, line spacing,

size, etc., in a similar way to styles in a word processor or DTP package. However, care must be taken. For example, many

pages specify fixed point sizes that may not display well on different platforms and can cause problems for people with

visual impairments.

 The use of color is of great importance for web pages, but it is often abused. First, it should be remembered that a

significant proportion of the potential viewers of the page will have problems with color, either because they are using older

machines with a limited color palette, or because they have some form of color blindness.

 Users also bring a deep-rooted emotional interpretation to colors; as we have seen, in some cultures, red is associated with

danger and anger, whilst green is regarded as go, or safe. Blue can be a cool color, orange a warm one, and so on.

 Links usually change color once they have been accessed, providing cues to the user about what material they have already

explored. This means that two distinct but still suitable colors need to be associated with each link, so that the system is

acceptable whether or not the links have been activated.

 Note, too, that consistent use of color can help the user understand the role of particular elements more intuitively, whereas

color used for no clear purpose is often distracting.

 One common mistake is to put colored text onto a similar colored background so that it becomes nearly invisible. One of

the authors had a student who designed a beautifully laid out page of text, and decided to add a background to the page just

before demonstrating it to the rest of the group. It was only at the demonstration that he realized that the cool black

background he had added made the black text impossible to see!

 There are only a limited number of text-placing options: text can be left or right justified, or centered. There are a few

predefined formatting styles such as ordered

and unordered lists that have additional structure, in the form of indentation from the left margin, with numbering in the case

of ordered lists. Vertical positioning is even more limited, but tables and frames allow a greater degree of horizontal and

vertical placement. More precise positioning still can be obtained using ‘dynamic HTML’ (DHTML), which allows parts

of an HTML document (called layers or ‘div’ sections) to be positioned as if they were separate mini-pages within the

browser window. The word ‘dynamic’ is used because these can then be controlled using JavaScript to produce various

animated effects .

Remember that monitors are different sizes and that some people use full-screen windows and others smaller ones. To

prevent very long lines, many designers lay out pages within tables that put maximum widths (in pixels) for columns based

on typical minimum expected monitor sizes (perhaps 800 × 600 or even 640 × 480). If fixed layouts or large graphics are

used then they may either display strangely on smaller windows or force the user to scroll horizontally, which many users

find confusing.

The lack of explicit textual positioning makes it very difficult to produce complex mathematical equations, and the font

set available is not rich enough to provide a suitable approximation. Developments in the specification are addressing this,

though the intrinsic complexity of typesetting mathematics suggests that it may be a while before a simple, usable solution is

found that is acceptable to readers, page designers, and implementers of web browsers alike.

 text style
o generic styles universal: serif, sans, fixed, bold, italic
o specific fonts too, but vary between platforms

37

o cascading style sheets (CSS) for fine control
 but beware older browsers and fixed font sizes

o colour … often abused!
o positioning
o easy .. left, right justified or centred
o precise positioning with DHTML

but beware platforms and screen size

3.4.4.3 GRAPHICS

Obtaining graphics

There are a number of sites on the web that contain archives of graphical images, icons, backgrounds and so on. There is also

paint and image manipulation packages available on almost all computer systems, and scanners and digital cameras, where

available, enable the input of photographs and diagrams.

Using graphics

While graphics and icons tend to play a significant role in web page design, their use should be carefully thought

out. Graphical images take longer to load than text, and this may become a problem. Text uses 8 bits to represent a character:

some rough calculations show that approximately 2000 characters represent about a screenful of information, and so 16,000

bits (2 K) are required. For graphics, one pixel may use 8 bits to represent its color: a page-sized image will be at least 600

by 400 pixels, which will take 1,920,000 bits (240 K), or 120 times as long to load. Put another way, while a picture may tell

a thousand words, it takes approximately 50 times as long to appear! Users become bored with operations that take a long

time to complete, and are unlikely to wait for ages while a page appears.

Complex backgrounds are the worst offenders in this area; they offer little in the way of added value to the

information presented on the page, and cause great frustration for the poor reader. They tend to be designed and tested only

on local machines, with high-bandwidth connections between them, which means that the time factor is negligible for the

designer/user. However, this disregards the fact that many people accessing the page will be using congested, slow networks,

with a transfer rate sometimes down to a few kilobits per second, rather than fast megabit links. Fussy backgrounds also

have the unfortunate ability to obscure text, making it very difficult or impossible to read.

Different browsers support different types of functionality, with more recent versions having features that try to

alleviate the usability problems introduced by the delay involved in downloading graphics. Most browsers support caching,

in which graphics are downloaded once and temporarily stored on the user’s local machine. If the same image is reused, it is

fetched from the local store far more rapidly than if it was retrieved from the remote site. This clearly has implications for

page design: if graphics are to be used, then their reuse wherever possible speeds up the whole process of drawing the page.

Complex graphics can sometimes be broken down into a set of items, many of which can be reused and assembled

in different ways to add visual impact to the page without causing large delays. Most browsers also offer the option of

turning off automatic image loading, so that only the text is downloaded. If a page then appears to be of interest, the graphics

can be explicitly requested. It is sometimes possible to set out a page so that it still looks attractive even without the

graphics, which is necessary if the user has turned off image loading. There are other browsers that are purely text based and

do not support graphics of any sort, and for these HTML offers an additional image attribute that allows a textual description

of the image to be used as an alternative. The need to support these different user preferences and browser capabilities

provides a great challenge in designing pages that are acceptable to all.

Some browsers have additional features related to image handling as a technological response to the problem of

page usability. If the designer specifies the size of the image in advance, the browser can lay out the text on the page first,

leaving spaces for the images. This allows the user to continue to read the page contents whilst the images are being

downloaded into their respective slots. This capability improves the usability of the page, and so should be supported by the

page designer whenever possible, by incorporating the necessary information into the image reference.

Both GIF (graphics interchange format) and JPEG (Joint Photographic Experts Group), the most widely used web

graphic image formats, can be saved in forms that allow them to be progressively transmitted. This means that images appear

as a whole, but very blurred, version that becomes gradually sharper, rather than appearing in perfect resolution a line at a

time. An overall impression of the page and the graphic information appearing is thus given to the user, who is then better

informed about whether or not to continue the download.

The JPEG format is optimized for photographic images and makes use of their properties to offer a higher compression

ratio and hence faster loading. However,its compression is lossy, that is the image reproduced is slightly different from the

38

original, losing certain kinds of visually indistinguishable colors and losing high-frequency change. The latter is because

photographs tend to have slowly varying changes with few sharp edges. If sharp-edged images such as diagrams or text

labels are stored as JPEGs, small artifacts are produced such as ripples appearing around letters and lines. In contrast GIF

uses a lossless compression so that the image appears exactly as it started. Although GIFs can be used for photographic

images, the compression is very poor.

The GIF format also allows animated GIFs. These are a sort of mini-slide show or movie where several images are

stored in the same file and play one after another. These can be used to produce simple and effective animations, but when

overused can lead to very ‘noisy’ pages.

Active image maps are pictures with defined ‘hot’ areas, which, when clicked, execute a particular script, usually calling

another web page or graphic. The careful use of such maps can transform an interface, but there is an overhead to pay in

loading the map and calling and running the script, and this should be considered carefully by a page designer.

Another characteristic of image maps is that there is rarely any indication of which areas are active and which is not, and

it can be difficult for users to ensure that they have visited all the active regions. For accessing spatially organized

information, image maps are very suitable .

Icons

on the web just small images
– for bullets, decoration
– or to link to other pages
– lots available!
– design … just like any interface
– need to be understood
– designed as collection to fit …
– under construction

Graphics and color

 Using many different colors within graphics may well result in the browsers for older machines running out of

entries in the color map, with unpredictable consequences. This is often problematical as the browser may be running in

tandem with other color applications, and only has a restricted range of colors to begin with.

For many consumer markets, for example in the UK and the US, this is unlikely to be a problem as home

machines are often relatively recent. However, many businesses continue to use older PCs so long as they ‘do the job’ and

PDAs may not have a full color palette. Furthermore, in economically deprived areas, where there is computer access it may

well be through older or second-hand machines.

If universal access is required it is therefore still wise, where possible, to restrict images to a limited number of

colors, taken from the standard 216 color web palette, and to reduce complex color images to simpler approximations.

Reducing the number of colors used also allows the depth of the images to be reduced; a change from a default of 8 bits to,

say, 4 bits will produce a twofold speedup in image loading. The earlier comments on the use of color obviously apply as

much to graphics as they do to text.

One further point should be made about graphics: computer screens are typically limited to a resolution of around

72 dpi (dots per inch), and so either high-resolution images will have to be displayed much larger than actual size, or the

increased resolution will be forfeited.

3.4.4.4 MOVIES AND SOUND

 Movies and sound are both available to users of the web, and hence to page designers. One problem associated

with them is actually obtaining appropriate sound and video clips, as they usually require some sort of multimedia capability

on behalf of the host machine in order to be able to digitize sound and capture and digitize video. Video suffers from the

same problems as graphics, magnified by an order of magnitude or two; it can take extremely large amounts of time for a

video segment to download. Video is also not well integrated into the web, requiring the creation of a process to run it that is

separate from the page from whence it came. Not all receiving machines have the capability to play video, or sound, and so it

is unwise for a designer to rely on these dynamic media to convey information without replicating it elsewhere.

The use of sound and video moves page design further away from the typesetter and toward the sound engineer

and cinematographer; the integration of these cinematic media with the enhanced textual capabilities offered by the web is a

new domain, in which the techniques that work and those that fail have not yet been fully explored, let alone understood.

 The need to download movies and sound (see Figure 3.14) puts sharp limits on the length of clip that can be

shown. Streaming media over the internet, such as RealVideo, RealAudio and CuSeeMe, allow potentially unlimited

sources. As well as longer prepared clips, these techniques allow live transmission (e.g. live radio broadcasts over

39

RealAudio) and long recorded sequences for asynchronous communication. An excellent use of the latter is the eClass

project, which links recordings of audio and video during a lecture with pen strokes on an electronic whiteboard, so that

students can replay the part of a lecture associated with any slide or annotation.

 Acceptable streaming video and audio is achieved by a combination of high compression and large client-end buffers.

The former leads to loss of quality including blurring and ghosting after rapid changes in screen content. The latter leads to

delays, often of several seconds, which makes it impossible to support video conferencing. The challenges of achieving high

quality transmissions (e.g. for video on demand) and low latency (e.g. for video conferencing) are active research topics in

multimedia technology.

Figure 3.14 Animated GIF or movie needs to download completely

Buffering effectively solves this by trading off quality against delay, which is okay for fixed content, or low pace

change (as in eClass), but is problematic when we require a high pace of interaction (as in video conferencing). CuSeeMe

uses little buffering and hence is more likely to suffer break-up of video and audio.

3.4.5 DYNAMIC WEB CONTENT

3.4.5.1 THE ACTIVE WEB

 In the early days, the web was simply a collection of (largely text) pages linked together. The material was static or

slowly changing and much of it authored and updated by hand. Some pages were generated on the fly, in particular the

gateways into ftp servers and to gophers, which were so important in adding ‘free’ content to the web. However, even here

the user’s model was still of a static repository of information. Web surfers may not have always known where they were,

but they had a pretty good idea of what they were seeing and that if they came back it would be the same.

3.4.5.2 WHAT HAPPENS WHERE

 When considering dynamic material on the web we need to take the external, user’s viewpoint and ask what is changing:

media, presentation or actual data; by whom: by the computer automatically, by the author, by the end-user or by

another user; and how often, the pace of change: seconds, days or months? From a technical standpoint, we also need to

know where ‘computation’ is happening: in the user’s web-browsing client, in the server, in some other machine or in the

human system surrounding it? The ‘what happens where’ question is the heart of architectural design. It has a major impact

on the pace of interaction, both feedback, how fast users see the effects of their own actions, and feed through, how fast

they see the effects of others’ actions. Also, where the computation happens influences where data has to be moved to with

corresponding effects on download times and on the security of the data.

The user view

 One set of issues is based on what the end-user sees, the end-user here being the web viewer.

What changes? This may be a media stream (video, audio or animation) which is changing simply because it is the

fundamental nature of the medium. It may be the presentation or view the user has of the underlying content; for

example, sorting by different categories or choosing text-only views for blind users.

 A special form of presentation change is when only a selection of the full data set is shown, and that selection

changes. The deepest form of change is when the actual content changes.

By whom? Who effects the changes? In the case of a media stream or animation, the changes are largely automatic – made

by the computer. The other principal sources of change are the site author and the user. However, in complex sites users

may see each other’s changes – feed through.

How often? Finally, what is the pace of change? Months, days, or while you watch?

Technology and security

 The fundamental question here is where ‘computation’ is happening. If pages are changing, there must be some form of

computation’ of those changes. Where does it happen?

40

Client One answer is in the user’s web-browsing client enabled by Java applets, various plug-ins such as Flash, scripting

using JavaScript or VBScript with dynamic HTML layers, CSS and DOM (Domain Object Model).

Server A second possibility is at the web server using CGI scripts (written in Perl, C, UNIX shell, Java or whatever you

like!), Java Servlets, Active Server Pages or one of the other server-specific scripting languages such as PHP. In addition,

client-side Java applets are only allowed to connect to networked resources on the same machine as they came from. This

means that databases accessed from client-side JDBC (Java database connectivity) must run on the web server (see below).

Another machine Although the pages are delivered from the web server, they may be constructed elsewhere. For hand-

produced pages, this will usually be on the page author’s desktop PC. For generated pages, this may be a PC or a central

database server.

People The process of production and update may even involve people!

It is easy to roll out maxims such as ‘users first’, but, in reality, the choice between these options is not solely a matter of

matching the end-user requirements. The best choice also depends on the expertise of the web developer and external

limitations. If the server runs on a UNIX machine, you can’t expect to use Microsoft Active Server Pages.

If you are designing for an intranet you may even get to influence the choice of client software and so make it easier to use

more complex client-end solutions.

3.4.5.3 FIXED CONTENT – LOCAL INTERACTION AND CHANGING VIEWS

 Probably the most hyped aspect of the web in recent years has been Java. In fact, Java can be used to write

server-end software and platform independent standalone pro-grams (not to mention the embedded systems for which it was

originally designed!), but the aspect that most people think of is Java applets.

Figure 3.15 Java applet or JavaScript running locally

Applets are just one of the techniques that can be added to give client-end inter-action (and about the least well

integrated into the rest of the page). The most common alternatives are JavaScript, Flash and if you are prepared to limit

yourself to Windows platforms, ActiveX plug-ins. These techniques share the characteristic that they are downloaded to the

user’s own machine (see Figure 3.15) and thereafter all interaction happens on the PC, not across the network (with caveats

– see below).

The simplest use of this is to add interaction widgets such as roll-over buttons (usually using JavaScript). More

complex pages may add the equivalent of an

Figure 3.16 Simulated coin tossing using JavaScript. Screen shot frame reprinted by permission from Microsoft

Corporation

interactive application on the page. For examples, see Alan’s pages on coin tossing experiments (Figure 3.16), which use

JavaScript to emulate real and biased coins, and dancing histograms (Figure 3.17), which use a Java applet. See Sun and

JavaSoft’s own sites for many more examples. The addition of DHTML gives even more opportunities for dynamic pages

where parts of the page can move, change size, or change content all without any interaction with the web server.

41

Figure 3.17 Dancing histograms using Java applet. Screen shot frame reprinted by permission from Microsoft Corporation

3.4.5.4 SEARCH

All common web search pages work by submitting forms to the server where CGI programs perform the searches

and return results. An additional reason for this approach is that most browsers support forms, but some still do not support

Java or scripting in a consistent manner. The web search engine for this book works in this way.

The user’s keywords are submitted to the server using an HTML form, they are compared against pre-prepared

indexes at the server and all matching paragraphs in the book are returned (Figure 3.18).

The variable factor is the user’s input. The computation needs both the data supplied by the web author and the

user’s input. The result must end up on the user’s screen. Either the data must come to the user’s machine or the user’s input

must go to the server.

Figure 3.18 HCI book search

3.4.5.5 AUTOMATIC GENERATION

Automatic generation includes vendor-specific products such as Oracle Web Server and Domino (for publishing

Lotus Notes), and also more general techniques such as using SQL (structured query language) or JDBC to access databases

from CGI scripts or even from running Java applets.

Database-generated websites have many advantages.

 They make use of existing data sources.

 They guarantee consistency of different views of the data within the site and between the site and the corporate

data.

 They allow easy generation of tables of contents, indices, and inter-page links.

 They separate content and layout.

The most dynamic way to get database content on the web is by accessing a database directly from a running applet.

The interface can then have any look-and-feel that can be programmed in Java and can allow very rapid interaction

with the user. The Java applet can establish an internet connection back to the web server to access data files using HTTP (as

if they were web pages), it can connect to a bespoke server (e.g. for chat type applications) or it can use standard data-base

access methods. The latter would normally use JDBC, the Java database access package. Using JDBC the applet can issue

complex SQL queries back to the database meaning that some of the most complex work happens there (Figure 3.19).

 In all cases, the Java security model built into most web browsers means that the applet can only connect

back to the machine from which it came. This means that the database server must run on the same machine as the web

server.

42

Figure 3.19 Java applet accesses database using JDBC

Figure 3.20 CGI script accesses database

The most insecure part of any system is usually the web server, both because it is easy to leave loop holes in the

many file access permissions and also because it often sits outside the most secure part of a corporate firewall.

The more common solution is where the user uses a web forms interface (or special URL) and then a CGI script

runs at the server end accessing the database (Figure 3.20). The CGI script generates a web page, which is then returned to

the user. Some of the vendor-specific solutions use essentially this approach but bypass the web-server/CGI step by having

their own special web server which accesses the database directly using their own scripting language or templates.

The user interface of such systems is limited to standard HTML features. This is a limitation, but is at least consistent

and means that it will work with virtually any browser. Java applets can offer more rapid surface interaction, but both have

to wait for the actual data to move between server and client. Of course, the pages generated by a CGI script can themselves

contain JavaScript or Java applets for local inter-action, so the difference between the two solutions is not so radical as first

appears.

From a security angle, the database accessed from the CGI script can run on a separate machine (using standard database

remote access methods or even a Java/JDBC CGI program), thus making the system more secure. However, the database

cannot be entirely secure – if the web-server machine is compromised the CGI scripts can be altered to corrupt or modify the

database. The special vendor-specific web servers are probably more secure as they don’t require a standard web server to be

running.

3.4.5.6 BATCH GENERATION

A low-tech but very secure solution is to generate pages offline from a database and then upload them to the web

server (Figure 3.21).

Figure 3.21 Batch pre-generation of web pages

 This is certainly a simple solution as it separates out the task of page generation from that of page delivery. Pages

can be generated directly using many standard database packages such as Access or HyperCard. Alternatively,

standalone programs in languages such as Visual Basic, Java or C can access a database and output HTML pages.

These programs can run on a central computer, or on your own PC. The generating program simply produces a set of

HTML pages on your own disk that can be checked locally and then copied onto the web server using ftp or shared

network disks.

The snippet of Visual Basic in Figure 2.22 is a trivial but fully functioning HTML generator.

Set db = openDatabase("C:\test.mdb"); sql = "select Name, Address from Personnel;"
Set query = db.OpenRecordset(sql) Open "out.html" For Output As #1
Print #1, "<h1>Address List</h1>" query.MoveFirst
While Not query.EOF
Print #1, "<p>" & query("Name") & " "; query("Address")
query.MoveNext Wend
Close #1 query.Close

Some web scripting languages can be used in this mode too. For example PHP allows you to send the page being

generated into a buffer, which can then be saved to a file. This can be run on a separate machine, or on the web server itself.

43

The offline generation of web pages means that there is no need for an online connection between the web server

and the database. The web server can be configured without CGI scripting enabled at all, which considerably increases its

security.

Figure 3.22 Visual Basic code to generate a web page

3.4.5.7 DYNAMIC CONTENT

 The most ‘active’ web pages are those where the content of the pages reacts to and is updateable by the web user.

If pages are generated from database content using either the Java-applet/JDBC method or the CGI method, the

same mechanisms can as easily be used to update as to access the database. The feedback of changes to the user is

effectively instantaneous

For example, you check for seat availability on the theatre web page, select a seat, enter your credit card details

and not only is the seat booked, but you can see it change from free to booked on the web page.

 Many business applications operate an n-tier web architecture. This involves multiple layers of software where the

outer layers are concerned more with the user interface and the inner layers more with business functionality. Figure 3.23

shows this using several web standards.

Figure 3.23 n-tier architecture

The user interacts through a web browser with a web server. The pages are generated using Java Servlet Pages (JSP). To

generate the page the servlets connect to Java Enterprise Beans (JEB) on an enterprise server. These are components that

encapsulate ‘business logic’. For example, in a banking system this could include rules on whether a particular transaction

is allowed. These Java Enterprise Beans draw their data from the corporate database using JDBC connections.

All the Best!

4. MOBILE HCI

Syllabus: Mobile Ecosystem: Platforms, Application frameworks - Types of Mobile Applications:
Widgets, Applications, Games - Mobile Information Architecture, Mobile 2.0, Mobile Design: Elements of
Mobile Design, Tools.

Topics
4.1 Mobile Ecosystem:

o Platforms

o Application frameworks

4.2 Types of Mobile Applications:
o Widgets

o Applications

o Games

4.3 Mobile Information Architecture
4.4 Mobile 2.0
4.5 Mobile Design:

o Elements of Mobile Design

o Tools

4.1 Mobile Ecosystem:
Mobile is an entirely unique ecosystem and like the Internet, it is made up of many different parts that must

all work seamlessly together.
If the Internet is a cloud, then the mobile ecosystem would be the atmosphere,made up of many clouds.
The internet is just one of these clouds, though a very large one.

Fig 4.1 Layers of Mobile Ecosystem
Each layer is reliant on the others to create a seamless, end-to-end experience. Although not every piece of

the puzzle is included in every mobile product and service, for the majority of the time, they seem to add

1

complexity to our work, regardless of whetherwe expressly put them there. The following sections expand on each
of these layers and the roles they play in themobile ecosystem.

4.1.1 Platforms
A mobile platform’s primary duty is to provide access to the devices. To run software and services on each

of these devices, we need a platform, or a core programminglanguage in which all of the software is written. Like
all software platforms, these aresplit into three categories: licensed, proprietary, and open source.

4.1.1.1 Licensed
Licensed platforms are sold to device makers for nonexclusive distribution on devices.

The goal is to create a common platform of development Application Programming Interfaces (APIs) that work
similarly across multiple devices with the least possible effort required to adapt for device differences, although this
is hardly reality.
Following are the licensed platforms:

i. Java Micro Edition (Java ME)

Formerly known as J2ME, Java ME is by far the most predominant software platform of any kind in the mobile
ecosystem. It is a licensed subset of the Java platform and provides a collection of Java APIs for the development of
software for resourceconstrained devices such as phones.

ii. Binary Runtime Environment for Wireless (BREW)

BREW is a licensed platform created by Qualcomm for mobile devices, mostly for the U.S. market. It is an
interface-independent platform that runs a variety of application frameworks, such as C/C++, Java, and Flash Lite.

iii. Windows Mobile

Windows Mobile is a licensable and compact version of the Windows operating system, combined with a suite
of basic applications for mobile devices that is based on the Microsoft Win32 API.

iv. LiMo

LiMo is a Linux-based mobile platform created by the LiMo Foundation. Although Linux is open source, LiMo
is a licensed mobile platform used for mobile devices. LiMo includes SDKs for creating Java, native, or mobile web
applications using the WebKit browser framework.

4.1.1.2 Proprietary
Proprietary platforms are designed and developed by device makers for use on theirdevices. They are not

available for use by competing device makers. These include:

i. Palm

Palm uses three different proprietary platforms. Their first and most recognizable is the Palm OS platform
based on the C/C++ programming language; this was initially developed for their Palm Pilot line, but is now used in
low-end smartphones such as the Centro line. As Palm moved into higher-end smartphones, they started using the
Windows Mobile-based platform for devices like the Treo line. The most recent platform is called webOS, is based
on the WebKit browser framework, and is used in the Pre line.

ii. BlackBerry

Research in Motion maintains their own proprietary Java-based platform, used exclusively by their BlackBerry
devices.

iii. iPhone

Apple uses a proprietary version of Mac OS X as a platform for their iPhone andiPod touch line of devices,
which is based on Unix.

4.1.1.3 Open Source
Open source platforms are mobile platforms that are freely available for users to download, alter, and edit.

2

They are newer and slightly controversial, but increasingly gaining traction with device makers and developers.

Example: Android. It is developed by the Open Handset Alliance, which is spearheaded by Google. The Alliance
seeks to develop an open source mobile platform based on the Java programming language.

4.1.2 Application Frameworks
Application frameworks are used to create applications, such as a game, a web browser, a camera, or media

player. Although the frameworks are well standardized, the devices are not.
The largest challenge of deploying applications is knowing the specific device attributes and capabilities.

Example: For creating an application using the Java ME application framework, we need to know what version of
Java ME the device supports, the screen dimensions, the processor power, the graphics capabilities, the number of
buttons it has, and how the buttons are oriented.
Multiply that by just a few additional handsets and we have hundreds of variables to consider when building an
application.
Multiply it by the most popular handsets in a single market and we can easily have a thousand variables, quickly
doomingour application’s design or development.

Although mobile applications can typically provide an excellent user experience, it almost always comes at
a fantastic development cost, making it nearly impossible to create a scalable product that could potentially create a
positive return on investment.

A common alternative these days is creating applications for only one platform, such as the iPhone or
Android. By minimizing the number of platforms the developer has to support and utilizing modern application
frameworks, the time and cost of creation go down significantly.
The mobile web browser is an application that renders content that is device-, platform-, and operating-system-
independent.

The web browser knows its limitations, enabling content to scale gracefully across multiple screen sizes.
However, like all applications, mobile web browsers suffer from many of the same device fragmentation problems.
When a device is sold to an operator, it is provisioned (customized) to their requirements. This means the operators
will often put customized applications on each of the devices sold. With the example of the RAZR, every operator
had it and every operator put a different web browser on it. To make matters worse, the RAZRs, like most phones,
are not field-refreshable, meaning that you can’t update the software, upgrade the applications, or eliminate bugs.

For example, if a device manufacturer makes a device called the MDv1, they must strike a deal with an
operator if they want to preload an operator store application, a different web browser, and bowling game. The
device is sold as the MDv1.1. The operator sells the devices, or worse, gives them away for free. A couple hundred
thousand of them go out into the marketplace before a glitch in the hardware is detected, such as dropped calls.
Because the device cannot be upgraded by cable or over the air, the operator stops selling the MDv1.1, but seeing
that they have a hit, they quickly replace it with the MDv1.1.1. The whole process is repeated as it is provisioned to
each operator. Suddenly, there is an MDv1.2, an MDv1.3, an MDv1.4, and so on. Then we have the next
generations—the MDv1.2.1, the MDv1.3.1, the MDv1.4.1, and so on, spreading like a virus. This is essentially
what causes device fragmentation, making application development a costly and timely endeavor.

4.2 Types of Mobile Applications:

4.2.1 Mobile Web Widgets
Largely in response to the poor experience provided by the mobile web over the years, there has been a

growing movement to establish mobile widget frameworks and platforms.

3

For years the mobile web user experience was severely underutilized and failed to gain traction in the market, so
several operators, device makers, and publishers began creating widget platforms to counter the mobile web’s
weaknesses.

According to Webster’s Dictionary “ Mobile Widget is a component of a user interface that operates in a
particular way”. Wikipedia defines a web widget this way: “A portable chunk of code that can be installed and
executed within any separate HTML based web page by an end user without requiring additional compilation”.

Between these two definitions is a better answer: “A mobile web widget is a standalone chunk of
HTML-based code that is executed by the end user in a particular way”.

Basically, mobile web widgets are small web applications that can’t run by themselves; they need to be
executed on top of something else. Opera Widgets, Nokia Web RunTime (WRT), Yahoo! Blueprint, and Adobe
Flash Lite are all examples of widget platforms that work on a number of mobile handsets. Using a basic knowledge
of HTML, we can create compelling user experiences that tap into device features and, in many cases, can run while
the device is offline.

Widgets, however, are not to be confused with the utility application context, a user experience designed
around short, task-based operations.

Pros and Cons of Mobile Web Widgets

Pros
The pros of mobile web widgets are:
• They are easy to create, using basic HTML, CSS, and JavaScript knowledge.
• They can be simple to deploy across multiple handsets.
• They offer an improved user experience and a richer design, tapping into device features and offline use.

Cons
The cons of mobile web widgets are:
• They typically require a compatible widget platform to be installed on the device.
• They cannot run in any mobile web browser.
• They require learning additional proprietary, non-web-standard techniques.

4.2.2 Mobile Web Applications
Mobile web applications are mobile applications that do not need to be installed or compiled on the target

device. Using XHTML, CSS, and JavaScript, they are able toprovide an application-like experience to the end user
while running in any mobile web browser. Web applications allow users to interact with content in real time, where
a click or touch performs an action within the current view.

The history of how mobile web applications came to be so commonplace is interesting. Shortly after the
explosion of Web 2.0, web applications like Facebook, Flickr, and Google Reader hit desktop browsers, and there
was discussion of how to bring those same web applications to mobile devices. The Web 2.0 movement brought
user-centered design principles to the desktop web, and those same principles were sorely needed in the mobile web
space as well.

The challenge, as always, was device fragmentation. The mobile browsers were years behind the desktop
browsers, making it nearly impossible for a mobile device to render a comparable experience. While XHTML
support had become fairly commonplace across devices, the rendering of CSS2 was wildly inconsistent, and support
for Java-

Script, necessary or simple DHTML, and Ajax was completely nonexistent.
To make matters worse, the perceived market demand for mobile web applications was not seen as a

priority with many operators and device makers. It was the classic chicken or-the-egg scenario. What had to come
first, market demand to drive browser innovation or optimized content to drive the market?

4

With the introduction of the first iPhone, we saw a change across the board.
Using WebKit, the iPhone could render web applications not optimized for mobile devices as perfectly

usable, including DHTML- and Ajax-powered content. Developers quickly got on board, creating mobile web
applications optimized mostly for the iPhone. The combination of a high-profile device with an incredibly powerful
mobile web browser and a quickly increasing catalog of nicely optimized experiences created the perfect storm the
community had been waiting for.

Pros and Cons of Mobile Web Applications

Pros
The pros of mobile web applications are:
• They are easy to create, using basic HTML, CSS, and JavaScript knowledge.
• They are simple to deploy across multiple handsets.
• They offer a better user experience and a rich design, tapping into device features and offline use.
• Content is accessible on any mobile web browser.

Cons
The cons of mobile web applications are:
• The optimal experience might not be available on all handsets.
• They can be challenging (but not impossible) to support across multiple devices.
• They don’t always support native application features, like offline mode, locationlookup, filesystem access,
camera, and so on.

Native Applications
The next mobile application medium is the oldest and the most common; it is referredto as native

applications. These applications actually should be called “platform applications,” as they have to be developed and
compiled for each mobile platform.

These native or platform applications are built specifically for devices that run the platform in question.
The most common of all platforms is Java ME (formerly J2ME). A device written as a Java ME MIDlet should
work on the vast majority of feature phones sold around the world. The reality is that even an application written as
a Java ME MIDlet still requires some adaptation and testing for each device it is deployed on.

In the smartphone space, the platform SDKs get much more specific. Although many smartphones are also
powered by Java, an operating system layer and APIs added to allow developers to more easily offload complex
tasks to the API instead of writing methods from scratch. In addition to Java, other smartphone programming
languages include versions of C, C++, and Objective-C.

Creating a platform application means deciding which devices to target, having a means of testing and
certification, and a method to distribute the application to users. Thevast majority of platform applications are
certified, sold, and distributed either through an operator portal or an app store. It is possible to create a Java ME
MIDlet application and publish it for free on the Web, but it is rarely done.

Pros and Cons of Native Applications

Pros
The pros of native applications include:
• They offer a best-in-class user experience, offering a rich design and tapping into device features and offline use.
• They are relatively simple to develop for a single platform.
• You can charge for applications.

5

Cons
The cons of native applications include:
• They cannot be easily ported to other mobile platforms.
• Developing, testing, and supporting multiple device platforms is incredibly costly.
• They require certification and distribution from a third party that you have no control over.
• They require you to share revenue with the one or more third parties.

4.2.3 Games
The final mobile medium is games, the most popular of all media available to mobile devices. Technically

games are really just native applications that use the similar platform.
They are different from native applications for two reasons: they cannot be easily duplicated with web

technologies, and porting them to multiple mobile platforms is a bit easier than typical platform-based applications.
Adobe’s Flash and the SVG (scalable vector graphics) standard are the only way for the mobile games on the Web
now, and will likely be how it is done on mobile devices in the future, the primary obstacle being the performance
of the device in dealing with vector graphics.

The game mechanics are the only thing that needs to adapt to the various platforms. Like in console
gaming, there are a great number of mobile game portingshops that can quickly take a game written in one language
and port it to another.

Mobile games stand apart from all other application genres—their capability to be unique and difficult to
duplicate in anotherapplication type, though the game itself is relatively easy to port.

Pros and Cons of game applications

Pros
• They provide a simple and easy way to create an immersive experience.
• They can be ported to multiple devices relatively easily.

Cons
The cons of game applications are:
• They can be costly to develop as an original game title.
• They cannot easily be ported to the mobile web.

4.3 Mobile Information Architecture:

What Is Information Architecture?
• The structural design of shared information environments.
• The combination of organizations, labeling, search, and navigation systems within websites and intranets.
• The art and science of shaping information products and experiences to support usability and findability.
• An emerging discipline and community of practice focused on bringing principles of design and architecture to the
digital landscape
Information architecture, describe several unique disciplines, including the following:

i. Information architecture

The organization of data within an informational space. In other words, how the user will get to information or
perform tasks within a website or application.

ii. Interaction design

The design of how the user can participate with the information present, either in a direct or indirect way, meaning
how the user will interact with the website of application to create a more meaningful experience and accomplish
the goals.

6

iii. Information design

The visual layout of information or how the user will assess meaning and direction given the information presented
to him.

iv. Navigation design

The words used to describe information spaces; the labels or triggers used to tell the users what something is and to
establish the expectation of what they will find.

v. Interface design

The design of the visual paradigms used to create action or understanding.
Information architecture composes the core of the user experience. The role of information architecture is

played by a variety of people, from product managers to designers and even developers. Words like intuitive,
simple, findable, usable, or the executive favorite—easy to-use—all describe the role that information architects
play in creating digital experiences.

The visual design of product, what frameworks we use, and how it is developed are integral to the success
of any product, but the information architecture stands apart as being the most crucial element of the product. It
isthe first line of scrimmage—the user’s first impression of product. Even if we have the best design, the best code,
and the best backend service, if the user cannot figure out how to use it, she will fail—and so will the product.
When thinking about mobile information architecture, we want to keep it as simple as possible.

Support the defined goals. If something doesn’t support the defined goals, lose it. Go back to user goals
and needs, and identify the tasks that map to them. Find those needs and fill them.

Ask yourself: what need does my application fill? What are people trying to do here?

What is their primary goal? Once we understand that, it is a simple process of reverse engineering the path
from where they want to be to where they are starting. Cut out everything else—the site or application doesn’t need
it. For example, to get some news and information on a mobile device, we need to first ask what the goal is. What is
the need we are trying to fill? Then we need to apply context. Where are the users? What are they doing? Are they
waiting for the bus? Do they have only a minute to spare? Or, do they have five minutes to spare? With these
answers, we get our information architecture.

Keep all labels short and descriptive, and never try to be clever with the words we use to evoke action. The
worst sin is to introduce branding or marketing into information architecture; this will just serve to confuse and
distract users. Executives love to use the words they use internally to external communications on websites and
applications, but these words have no meaning outside of company walls.

Based on what we know from web design, we should use simple, direct terms for navigating around pages
rather than overly clever terms. That latter typically result in confused visitors who struggle to find the content they
are looking for. When that happens, they will go elsewhere to look for the information they want. So, if we apply
these same mistakes to a constrained device like mobile, then we end up adding confusion to the user experience at
a higher magnitude than the Web.

1. Site Maps

The first deliverable we use to define mobile information architecture is the site map.
Site maps are a classic information architecture deliverable. They visually represent the relationship of content to
other content and provide a map for how the user will travel through the informational space, as shown in Figure
4.2.Mobile site maps aren’t that dissimilar from site maps we might use on the Web. But there are a few tips
specific to mobile that we want to consider.

7

Fig 4.2 An Example of site map

In Figure 4.3, we can see a poorly designed mobile information architecture that too closely mimics its
desktop cousin; it was not designed with the mobile user in mind.

But in mobile, we cannot make this assumption. In the mobile context, tasks are short and users have
limited time to perform them. And with mobile websites, we can’t assume that the users have access to a reliable
broadband connection that allows them to quickly go back to the previous page. The users pay cash for viewing the
wrong page by mistake, they pay to again download the page they started from: we can’t assume that pages will be
cached properly.

Therefore, the advice is to limit users’ options.

8

Fig 4.3 An example of a bad Mobile Information Architecture that was designed with desktop users in mind
rather than mobile users

After the users have selected a path, it isn’t always clear whether they are getting to where they need to be.
Information-heavy sites and applications often employ nested or drill-down architectures, forcing the user to select
category after category to get to their target. To reduce risking the user’s time and money, we want to make sure we
present enough information for the user to wade through information architecture successfully. On the Web, we take
these risks very lightly, but with mobile, we must give our users a helping hand. We do this by teasing content
within each category— that is, providing at least one content item per category.

The challenge with ringtone sites is you have a lot of items, grouped by artist, album, genre, and so on. The
user starts with a goal like “I want a new ringtone” and finds an item that suits his taste within a catalog of tens of
thousands of items. In order to make sense of a vast inventory of content, we have to group, subgroup, and
sometimes even subgroup again, creating a drill-down path for the user to browse.

Though on paper this might seem like a decent solution, once you populate an application with content, the
dreaded “Page 1 of 157” appears.

Users would flip through a few pages of content, then give up or go back and visit another area. We could
see a direct relationship to the number of pages viewed to sales—essentially, more pages loaded meant fewer sales.
Then we realized we could take the most popular item based on sales and place it as the first item in any list, which
is teasing the content.

9

In Figure 4.4, we can see in a constrained screen that teasing the first few items of the page provides the
user with a much more intuitive interface, immediately indicating what type of content the user can expect.
We immediately saw that users were finding content more quickly, driving up our sales.

Fig 4.4 Teasing content to confirm the user’s expectations of the content within

2. Clickstreams

Clickstream is a term used for showing the behavior on websites, displaying the orderin which users travel
through a site’s information architecture, usually based on data gathered from server logs. Clickstreams are usually
historical, used to see the flaws in information architecture, typically using heat-mapping or simple percentages to
show where users are going. They are a useful tool for re architecting large websites.

However, information architecture in mobile is more like software than it is the Web, meaning that we
create clickstreams in the beginning, not the end. This maps the idealpath the user will take to perform common
tasks. Being able to visually lay out the path users will take gives a holistic or bird’s-eye view of mobile information
architecture, just as a road map does. When we can see all the paths next to each other and take a step back, we start
to see shortcuts and how we can get users to their goal faster or easier, as shown in Figure 4.5.

10

Fig 4.5An example clickstream for an iPhone web application

The esoteric diagram shown in Figure 4.6, which is made up of boxes and diamonds that look more like circuit
board diagrams than an information architecture.
A good architect’s job is to create a map of user goals, not map out every technical contingency or edge case. Too
often, process flows go down a slippery slope of adding every project requirement, bogging down the user
experience with unnecessary distractions, rather than focusing on streamlining the experience. In mobile, our job is
to keep it as simple as possible. We need to have an unwavering focus on defining an excellent user experience first
and foremost.

11

Fig 4.6 An example process flow diagram

3. Wireframes

The next information architecture tool is wireframes. Wireframes are a way to lay out information on the page,
also referred to as information design. Site maps show how our content is organized in our informational space;
wireframes show how the user will directly interact with it. Wireframes are like the peanut butter to the site map
jelly in our information architecture sandwich. Wireframes serve to make information space tangible and useful.

But the purpose of wireframes is not just to provide a visual for our site map; they alsoserve to separate layout
from visual design, defining how the user will interact with the experience. How do we lay out our navigation?
What visual or interaction metaphors will we use to evoke action? What are the best ways to communicate and
show information in the assumed context of the user? These questions and many more are answered with
wireframes.

The challenge is that a diagram on a piece of paper doesn’t go a long way toward describing how the
interactions will work. Most common are “in-place” interactions or areas where the user can interact with an
element without leaving the page. This can be done withAjax or a little show/hide JavaScript. These interactions
can include large amounts of annotation, describing each content area in as much length as we can fit in the margins
of the page, as shown in Figure 4.7.

12

Fig 4.7 Using annotations to indicate the desired interactions of the site or application

Often we get an idea that we think is brilliant, but once we say it out loud, it just sounds absurd.
In mobile, it is this kind of feedback, using wireframes as the key deliverable that turns good ideas into excellent
mobile products.

4. Prototyping

Wireframes lack the capability to communicate more complex, often in-place, interactions of mobile
experiences. This is where prototypes come in.

Prototypes might sound like a scary (or costly) step in the process. Some view them as redundant or too time-
consuming, preferring to jump in and start coding things. But as with wireframes, each product we’ve built out
some sort of prototype has saved both time and money. The following sections discuss some ways to do some
simple and fast mobile prototyping.

5. Paper prototypes

The most basic level we have is paper prototyping: taking our printed-out wireframes or even drawings of our
interface and putting them in front of people.

Create a basic script of tasks (hopefully based on either context or user input) and ask users to perform them,
pointing to what they would do. We act as the device, changing the screens for them. For paper prototypes, try using
small blank note cards, and for lower-end devices, use business card-sized paper. The size matters and we’ll learn as
much from how the user manages working with small media as we will what information is actually on it.

6. Context prototype

The next step is creating a context prototype. Take a higher-end device that enables to load full-screen images
on it. Take wireframes or sketches and load them onto the device, sized to fill the device screen. Leave the office.

13

Go for a walk down to nearest café. Or get on a bus or a train. As you are traveling about, pull out your device and
start looking at the interface in the various contexts you find yourself currently in.

Pay particular attention to what you are thinking and your physical behavior while you are using your interface
and then write it down. If you are brave and don’t have strict nondisclosure issues, ask the people around you to use
it, too. Try to keep an eye on a clock to determine how long the average session is.

7. HTML prototypes

The third step is creating a lightweight, semifunctional static prototype using XHTML,CSS, and JavaScript, if
available. This is a prototype that we can actually load onto a device and produce the nearest experience to the final
product, but with static dummycontent and data. It takes a little extra time, but it is worth the effort.

With a static XHTML prototype, you use all the device metaphors of navigation, you see how much content
will really be displayed on screen (it is always less than you expect), and you have to deal with slow load times and
network latency. In short, you will feel the same pains your user will go through.

Whatever route you wish to take, building a mobile prototype takes you one very big leap forward to creating a
better mobile experience. Different Information Architecture for Different Devices

Depending on which devices you need to support, mobile wireframes can range from the very basic to the
complex. On the higher-end devices with larger screens, we might be inclined to add more interactions, buttons, and
other clutter to the screen, but this would be a mistake. Just because the user might have a more advanced phone,
that doesn’t mean that he is giving you license to pack his screen with as much informationas you can muster.

The motivations, goals, and how users will interact with a mobile experience are the same at the low end as
they are on a high-end device. For the latter, you just have better tools to express the content. You can learn a lot
from designing for the lower end first.

The greatest challenge in creating valuable experiences is knowing when to lose what you don’t need. You
don’t have a choice on lower-end devices—it must be simple.

When designing for both, it is best to try and to keep your information architecture as close to each other as
possible without sacrificing the user experience. They say that simple design is the hardest design, and this principle
certainly is true when designing information architecture for mobile devices.

The Design Myth
A little secret about interactive design is that people don’t respond to the visual aestheticas much. What

colors you use, whether you use square or rounded corners, or, gradients or flat backgrounds, helps build first
impressions, but it doesn’t do too much to improve the user’s experience. Users appreciategood design, but they are
quickly indifferent about the visual aesthetic and move almostimmediately to the layout (information design), what
things are called (taxonomy), thefindability of content, and how intuitive it is to perform tasks. These are all facets
ofinformation architecture.

Just look at one of the top-selling iPhone Twitter applications, Tweetie. Many consider Tweetie to be a
“well-designed” application, but because it is built from the same API as all other iPhone applications, at first
glance there is little that is actually visually distinctive between this and other applications. What makes this
application “well designed” is how the content is applied to the context of the user—in other words, the mobile
information architecture. The point is great information design is often mistaken for great visual design.

Most non–information architects almost always do information architecture in someform or another; often,
they don’t even know they are doing it. They might do a few wireframes, or maybe a site map. Sometimes designers
will jump in and incorporate information architecture deliverables directly into their designs. By not focusing on the
information architecture exclusively from the start, we risk confusing our disciplines, our deliverables, and
ultimately our direction. The more time we spend focusing on just information architecture, the faster and less
costly the project will be.

4.4 Mobile 2.0:

14

What Is Mobile 2.0?
Mobile 2.0, refers to a perceived next generation of mobile internet services that leverage the social web,

or what some call Web 2.0. The social web includes social networking sites and wikis that emphasise collaboration
and sharing amongst users.

Mobile 2.0: The Convergence of the Web and Mobile
It is obvious that in the minds of many, Mobile 2.0 is the Web. At this point, the mobile web has always

been viewed as a second-class citizen within the mobile ecosystem, for many reasons, as discussed later.
Mobile is already a medium, but the consensus is that by leveraging the power of theWeb, integrating web services
into the mobile medium is the future of mobile development.

When the iPhone exploded onto the scene, it increased the usage of the mobile web by its users to levels
never seen before. The spur of new mobile web apps created just for the iPhone doubled the number of mobile
websites available in under a year.

If Web 2.0 taught us that the Web is the platform, then Mobile 2.0 tells us that mobile will be the primary
context in which we leverage the Web in the future.

The Mobile Web Browser As the Next Killer App
If the future of mobile is the Web, then it only makes sense that the mobile web browser is the next killer

app of mobile. This is something we saw confirmed with WebKitin the iPhone and later in Android.
However, of particular concern is how device fragmentation factors into mobile browsers.

For example, how can we expect developers to support more than 30 different mobile browsers? A fellow
panelist from the Mozilla Minimo project offered a potential solution in consolidation—that we will see only a few
mobile browsers in the future; specifically, browsers built on Mozilla, Opera, Internet Explorer, and WebKit
technologies.

The line between smartphone and feature phone seems to be going away, so this prediction is fairly
accurate.

But the single biggest challenge in mobile remains device fragmentation. The mobile browser enables us to
penetrate the problem by not having our content locked so specifically to the device abilities, screen size, and form
factor, but device fragmentation still causes old, outdated browsers to remain in the market long after they should be
put out to pasture.

What appears to be solving browser fragmentation is actually the iPhone. The MobileSafari browser
included with the iPhone provided such an excellent web experience on a mobile device that it drove use of the
mobile web to huge levels, which means big profits for the operators. This also means that the mobile web is no
longer a second class citizen. In the post-iPhone market, all new devices are judged by the quality of their mobile
web browser. Operators know it and therefore are demanding better browsers from device makers and browser
makers.

Mobile Web Applications Are the Future
Creating mobile web applications instead of mobile software applications has remained an area of

significant motivation and interest. The mobile community is looking at theWeb 2.0 revolution for inspiration, being
able to create products and get them to market quickly and at little cost. They see the success of small iterative
development cycles and want to apply this to mobile development, something that is not that feasible in the
traditional mobile ecosystem.

Developers have been keen for years to shift away from the costly mobile applications that are difficult to
publish through the mobile service provider, require massive testing cycles and costly porting to multiple devices,
and can easily miss the mark with users after loads of money have been dumped into them.The iPhone App Store
and the other mobile device marketplaces have made it far easier to publish and sell, but developers still have to
face difficult approval processes, dealing with operator and device maker terms and porting challenges.

15

Mobile software has two fundamental problems that mobile web applications solve.
The first is forcing users through a single marketplace. We know from years of this model that an app sold

through a marketplace can earn huge profits if promoted correctly.
Being promoted correctly is the key phrase. The companies that know how to work the system are the ones

that get the big prizes, making it increasingly hard for the small developer to see any kind of success. But the
mobile web provides any size of developer with the ability to promote and distribute their app on their terms,
building a relationship directly with their customers and not by proxy.

The second problem is the ability to update your application. It is certainly possible on modern
marketplaces like the App Store, but we are still years from that being the norm.

Mobile web apps enable you to make sure that you never ship a broken app, or if yourapp breaks in the
future due to a new device, to be able to fix it the same day the device hits the street. This flexibility isn’t possible in
the downloaded app market.

JavaScript Is the Next Frontier
If we are going to provide mobile web applications, we have to have a mobile web browser that supports

Ajax, or, XMLHttpRequest. It makes a lot of those cool interactions in web browser work via the capability to load
content asynchronously into browser view.

But it isn’t just Ajax; it is JavaScript, a web technology that has largely been ignored with most mobile
web browsers. Ajax is great, but just being able to do a little show/ hide or change a style after click or touch it goes
a long way toward improving the user experience.

This is probably where mobile web browsers fall behind desktop browsers the most.
Because they both support XHTML and CSS relatively well, JavaScript has been a nogoin mobile for

years. In order for mobile web apps to rival native applications, wehave to support some JavaScript.
Modern mobile browsers have made much progress over the last few years, but there is still plenty of work

to be done. For example, accessing the device capabilities like the phone book or filesystem with JavaScript doesn’t
work in a consistent way. These problems still need to be solved in order to truly reap the benefits of the Web.

Rich interactions kill battery life
JavaScript and Ajax have been ignored because using an Ajax-based web application on phone can drain

battery at a rate of four to five times normal power consumption.The two most prevalent reasons are:
• JavaScript consumes more processor power and therefore more battery life.
• Ajax apps fetch more data from the network, meaning more use of the radio and more battery life.

Unless we are in the habit of carrying around a bunch of extra batteries, expect to charge phone every hour
or two as a penalty for using the modern mobile web.

Apple and the open source WebKit browser have made huge strides by releasing aJavaScript engine that is
incredibly efficient on mobile devices, though the other big mobile browser technologies aren’t far behind. This
problem is going away quickly as the mobile browsers get better, batteries improve efficiency, and devices get more
powerful.

The Mobile User Experience Is Awful
Traditionally, the user experience available in the mobile web has been like using a website from 1995:

mostly text-based, difficult to use, and ugly as sin. This isn’t to say that the user experience of mobile applications
has been much better, but it used to be that if wanted a good experience, build a native app.

Mobile user experience was largely ignored for close to a decade. People in mobile treat the user
experience like a chicken-and-egg scenario: bad input/output of the user experience prevents adoption, but
designing a shiny user experience with bells and whistles will bring them in droves.

Device APIs usually force to use their models of user experience, meaning that wehave to work in the
constraints of the API. This is good for creating consistent experiences for that platform, but these experiences don’t

16

translate to others. For example, we cannot take an iPhone app design and put it on an Android device. The user
experience for these devices is similar but still remains different.

The beauty of the Web, literally, is that we can design whatever experience we want, for better or worse.
We are in control of the presentation and can establish own visual metaphors. The problem has been that
traditionally complex (which often equates to good) user experiences haven’t been possible on mobile devices.
Modern mobile web browsers, as they come closer to their desktop counterparts, remove this distinction, giving us
the same canvas on mobile devices that we have for the desktop.

This means that creating mobile experiences just got a whole lot easier. It also means we can have a
consistent user experience across multiple mediums.

Mobile Widgets Are the Next Big Thing
The challenges with the mobile web is to create a series of “small webs” targeted at a specific user or task.

Though I couldn’t figure out the problem being solved with these widgets,
Carrier Is the New “C” Word

It is clear that one of the key drivers of Mobile 2.0 and the focus on the mobile web is to find a way to
build a business that doesn’t rely on carrier control.

Mobile Needs to Check Its Ego
The mobile community and the web communityhave treated each other almost like rivals. It is the mobile

camp that needs to check their egos at the door and get into the game, before they learn that all the rules have
changed.

On the mobile side, we have some incredibly intelligent people who have been innovating amazing
products under insane constraints for years. On the web side, we have creative amateurs who have helped build a
community and ecosystem out of passion and an openness to share information.

The web guys want to get into the game and move the medium forward, partly out of desire open up a new
market for themselves, but mostly out of passion for all things interactive. But, to the mobile community, they are
seen as a threat to expertise. On the other hand, to the web community, the mobile guys come off as overly
protective, territorial, selfish, and often snobbish or egotistical, effectively saying, “Go away.”

Unless the mobile community comes together with the web community by sharing information,
experience, and guidance, one day they will find that their experience has become obsolete. In return, the web guys
will share their enthusiasm, willingness to learn, and passion that many in mobile development have forgot.

It’s that one principle of Web 2.0 that the mobile community has left out: harnessing collective
intelligence. The Web and the mobile community are reaching a point where the two worlds can no longer afford
not to be working together, sharing what they know and harnessing the collective intelligence of both media.

We Are Creators, Not Consumers
The final principle of Mobile 2.0 is recognizing that we are in a new age of consumerism.
Yesterday’s consumer does not look anything like today’s consumer. The people of today’s market don’t

view themselves as consumers, but rather as creators.
The web is about content. Sure, there are programming languages, APIs, and other technical

underpinnings, but what we do when we open a web browser? We read.
Our primary task online is to read, to gain information. During the early days of the Web, it took tools and

know-how in order to publish to the Web. But early in the Web2.0 evolution, we saw a rise in tools that allowed us
to publish to the Web easily, giving individuals a voice online, with a massive audience.

This democratization of the Web took many forms that some call “social media,” like blogging, social
networks, media sharing, microblogging, and lifestreams. Although social media may have many facets, they all
share the same goal: to empower normal, everyday people to become creators and publishers of content. It started
with the written word, then music, then photos, and more recently video was added. Entire markets have been

17

created to provide today’s consumer with gadgets, software, and web services to record and publish content so that
we can share it with our friends and loved ones.

At the center of this revolution in publishing is the mobile device. As networked portable devices become
more powerful, allowing us to capture, record, and share content in the moment, we are able to add a new kind of
context to content—the likes of which we haven’t seen since satellite television. Now you can share any moment
with any group of people in real time. Think about how powerful a concept that is! It could change entire cultures.

Tony Fish, coauthor of Mobile Web 2.0 (futuretext), says:
When everyone has the tools to create content, in addition to zero-cost publishing, we do not consume content, we
create it.

The early “Web 1.0” days clearly changed how business is done, because businesses are the primary
consumer of desktop computers. It probably is no coincidence that Web 2.0 occurred around the same time that
laptop computers became affordable for the average person, making the Web a more personal medium.
With Mobile 2.0, the personal relevance of the content matches how personal the device is and how personally it
applies to our everyday situations or our context.

4.5 Mobile Design:

4.5.1 The Elements of Mobile Design

The good design requires three abilities: the first is a natural gift for being able to see visually how
something should look that produces a desired emotion with the target audience. The second is the ability to
manifest that vision into something for others to see, use, or participate in. The third is knowing how to utilize the
medium to achieve our design goals.

To think like Mobile designerinvolves knowing the six elements of mobile design that we need to
consider, starting with the context and layering in visual elements or laying out content to achieve the design goal.
Then, we need to understand how to use the specific tools to create mobile design, and finally, need to understand
the specific design considerations of the mobile medium.

1. Context

Context is core to the mobile experience. As the designer, it isthe job to make sure that the user can figure
out how to address context using app. Some context based questions:
• Who are the users? What do you know about them? What type of behavior can you assume or predict about the
users?
• What is happening? What are the circumstances in which the users will best absorb the content you intend to
present?
• When will they interact? Are they at home and have large amounts of time? Are they at work where they have
short periods of time? Will they have idle periods of time while waiting for a train, for example?
• Where are the users? Are they in a public space or a private space? Are they inside or outside? Is it day or is it
night?
• Why will they use your app? What value will they gain from your content or services in their present situation?
• How are they using their mobile device? Is it held in their hand or in their pocket?

How are they holding it? Open or closed? Portrait or landscape?
The answers to these questions will greatly affect the course of design. Treat these questions as a checklist to the
design from start to finish. They can provide not only great inspiration for design challenges, but justification for
design decisions later.

2. Message

18

Another design element is message, or what we are trying to say about site or application visually. One might
also call it the “branding,”.The message is the overall mental impression we create explicitly through visual design.
Branding shouldn’t be confused with messaging. Branding is the impression company name and logo gives—
essentially, reputation. Branding serves to reinforce the message with authority, not deliver it. In mobile, the
opportunities for branding are limited, but the need for messaging is great. With such limited real estate, the users
don’t care about brand, but they will care about the messaging, asking themselves questions like, “What can this do
for me?” or “Why is this important to me?”

The approach to the design will define that message and create expectations. A sparse, minimalist design with
lots of whitespace will tell the user to expect a focus on content.
A “heavy” design with use of dark colors and lots of graphics will tell the user to expect something more
immersive.

3. Look and Feel

The concept of “look and feel” is an odd one, being subjective and hard to define.
Typically, look and feel is used to describe appearance, as in “I want a clean look and feel” or “I want a usable

look and feel.” The problem is: as a mobile designer, what does it mean? And how is that different than messaging?
Look and feel in a literal sense, as something real and tactile that the users can “look” at, then “feel”—something
they can touch or interact with. Look and feel is used to evoke action—how the user will use an interface.
Messaging is holistic, as the expectation the users will have about how you will address their context. It is easy to
confuse the two, because “feel” can be interpreted to mean our emotional reaction to design and the role of
messaging.

Establishing a look and feel usually comes from wherever design inspiration comes from. However,
personal inspiration can be a hard thing to justify. Therefore we have “design patterns,” or documented solutions to
design problems, sometimes referred to as style guides. On large mobile projects or in companies with multiple
designers, a style guide or pattern library is crucial, maintaining consistency in the look and feel and reducing the
need for each design decision to be justified.

Although a lot of elements go into making Apple’s App Store successful, the most important design
element is how it looks and feels. Apple includes a robust user interface tool that enables developers to use prebuilt
components, supported with detailedHuman Interface Guidelines (or HIG) of how to use them, similar to a pattern
library.

This means that a developer can just sit down and create an iPhone application that looks like it came from
Apple in a matter of minutes. During the App Store submission process, Apple then ensures that the developer uses
these tools correctly according to the HIG.

The look and feel can either be consistent with the stock user interface elements thatApple provides; they
can be customized, often retaining the “spirit” of Apple’s original design; or an entirely new look and feel can be
defined—this approach is often used for immersive experiences.

The stock user experience that Apple provides is a great example of how look and feel works to supporting
messaging. For the end user, the design sends a clear message: by using the same visual interface metaphors that
Apple uses throughout the iPhone, we can expect the action, or how this control will behave, but we can also expect
the same level of quality. This invokes the message of trust and quality in the application and in the platform as a
whole. Apple isn’t the first to use this shared look and feel model in mobile—in fact, it is incredibly common with
most smartphone platforms—but they are surely making it incredibly successful, with a massive catalog of apps and
the sales to support it.

Mobile designers haveto be creative and remember the context. Like in the early days of the Web, people
tend to be skeptical about mobile experiences. The modal context of the user—in this case, what device he is using
—should be considered during the design, as it will help to establish the user’s expectations of the experience.

4. Layout

19

Layout is an important design element, because it is how the user will visually processthe page, but the
structural and visual components of layout often get merged together, creating confusion and making design more
difficult to produce.

The first time layout should rear its head is during information architecture.
Why define the layout before the mobile design? Design is just too subjective of anissue. If we are creating a

design for anyone but our self, chances are good that there will be multiple loosely-based-on-experience opinions
that will be offered and debated.

There is no right answer—only opinions and gut instincts. Plus, in corporate environments we have internal
politics we have to consider, where the design opinions of theCEO or Chief Marketing Officer (CMO) might
influence a design direction more than, say, the Creative Director or Design Director.

By defining design elements like layout prior to actually applying the look and feel, wecan separate the
discussion. The majority of comments that reviewers would make were about the layout. They focus on the headers,
the navigation, the footer, or how content blocks are laid out, and so on. But their feedback will get muddied with
the “look and feel, the colors, and other design elements.”

Reviewers do make remarks like “I like the navigation list, but can you make it look more raised?” Most
designers don’t hear that; they hear “The navigation isn’t right, do it again.” But, with this kind of feedback, there
are two important pieces of information about different types of design. First, there is confirmation that the
navigation and layout are correct. Second, there is a question about the “look and feel.” Because designers hear “Do
it again,” they typically redo the layout, even though it was actually fine.

Creating mobile designs in an environment with multiple reviewers is all about gettingthe right feedback at the
right time. Our job is to create a manifestation of a shared vision. Layout is one of the elements we can present early
on and discuss independently.

People confuse the quality and fidelity of deliverables as design. By keeping it basic, we don’t risk having
reviewers confuse professionalism with design.

Different layouts for different devices
The second part of layout design is how to visually represent content. In mobile design, the primary

content element we deal with is the navigation. Whether we are designing a site or app, you need to provide users
with methods of performing tasks, navigating to other pages, or reading and interacting with content. This can vary,
depending on the devices we support.

There are two distinct types of navigation layouts for mobile devices: touch and scroll.
With touch, we literally point to where we want to go; therefore, navigation can beanywhere on the screen. But we
tend to see most of the primary actions or navigation areas living at the bottom of the screen and secondary actions
living at the top of thescreen, with the area in between serving as the content area, like what is shown inFigure 4.8.

20

Fig 4.8 iPhone HIG, showing the layout dimensions of Safari on the iPhone

This is the opposite of the scroll navigation type, where the device’s D-pad is used togo left, right, up, or
down. When designing for this type of device, the primary and often the secondary actions should live at the top of
the screen. This is so the user doesn’t have to press down dozens of times to get to the important stuff. In Figure 4.9,
we can actually see by the bold outline that the first item selected on the screen is the link around the logo.

Fig 4.9 Example layout of a scroll based application, where the user had to press the D-pad past each link to
scroll the page

When dealing with scroll navigation, we also have to make the choice of whether to display navigation
horizontally or vertically. Visually, horizontally makes a bit more sense, but when we consider that it forces the user
to awkwardly move left and right, it can quickly become a bit cumbersome for the user to deal with. There is no
right or wrong way to do it, but try and keep it as simple as possible.

Fixed versus fluid
Another layout consideration is how design will scale as the device orientation changes, for example if the

device is rotated from portrait mode to landscape and vice versa. This is typically described as either being fixed (a

21

set number of pixels wide), or fluid (having the ability to scale to the full width of the screen regardless of the
device orientation).

Orientation switching has become commonplace in mobile devices, and designshould always provide the user
with a means to scale the interface to take full advantage of screen real estate.

5. Color

The fifth design element, color, is hard to talk about in a black-and-white book. Maybe it is fitting, because it
wasn’t that long ago those mobile screens were available only in black and white (well, technically, it was black on
a green screen). These days, we havenearly the entire spectrum of colors to choose from for mobile designs.

The most common obstacle we encounter when dealing with color is mobile screens,which come in a number
of different color or bit depths, meaning the number of bits (binary digits) used to represent the color of a single
pixel in a bitmapped image. When complex designs are displayed on different mobile devices, the limited color
depth on one device can cause banding, or unwanted posterization in the image.

Different devices have different color depths. In Table 4.1, we can see the supported colors and a few example
devices.

Table 4.1 Supported Colors and Example Devices

The psychology of color
People respond to different colors differently. It is fairly well known that different colors produce different

emotions in people, but surprisingly few talk about it outside of art school. Thinking about the emotions that colors
evoke in people is an important aspect of mobile design, which is such a personal medium that tends to be used in
personalways. Using the right colors can be useful for delivering the right message and setting expectations.

One of the examples used earlier was the ESPN mobile site, which uses a bold red header to create a stark
and prominent tone to the design. But what does that say about
ESPN? What does it tell the user about the experience?

For the purposes of reference, Table 4.2provides some of the characteristics of various colors that naturally
evoke certain emotions in people.

22

Table 4.2 Color Characteristics

Note what some of the different colors can mean in different cultures. In some cases,the color we use can
have opposing meanings in different cultures. This is something to consider when thinking of deploying mobile
experience to countries with the highest number of mobile devices, such as China or India.

Color palettes
Defining color palettes can be useful for maintaining a consistent use of color in mobile design. Color palettes

typically consist of a predefined number of colors to use throughout the design. Selecting what colors to use varies
from designer to designer, each having different techniques and strategies for deciding on the colors. Three basic
ways to define a color palette:

i. Sequential

23

In this case, there are primary, secondary, and tertiary colors. Often the primary color is reserved as the “brand”
color or the color that most closely resembles the brand’s meaning. The secondary and tertiary colors are often
complementary colors that can be selected using a color wheel.

ii. Adaptive

An adaptive palette is one in which we leverage the most common colors present in a supporting graphic or
image. When creating a design that is meant to look native on the device, an adaptive palette can be usedto make
sure that colors are consistent with the target mobile platform.

iii. Inspired

This is a design that is created from the great pieces of design we might see onlineor offline, in which a picture
of the design might inspire us. This could be anything from an old poster in an alley, a business card, or some
packaging. Like with the adaptive palette, we actually extract the colors from the source image, though we should
never ever use the source material in a design.

Typography
The sixth element of mobile design is typography, which in the past would bring tomind the famous

statement by Henry Ford:
Any customer can have a car painted any color that he wants so long as it is black.

Traditionally in mobile design, you had only one typeface that we could use, and that was the device font. The only
control over the presentation was thesize.

As devices improved, so did their fonts. Higher-resolution screens allowed for a morerobust catalog of
fonts than just the device font. First, let’s understand how mobile screens work.

Subpixels and pixel density
There seem to be two basic approaches to how type is rendered on mobile screens: using subpixel-based

screens or having a greater pixel density or pixels per inch (PPI).
A subpixel is the division of each pixel into a red, green, and blue (or RGB) unit at a microscopic level,

enabling a greater level of antialiasing for each font character or glyph. The addition of these RGB subpixels
enables the eye to see greater variations of gray, creating sharper antialiasing and crisp text.

In Figure 4.10, you can see three examples of text rendering. The first line shows a simple black and white
example, the second shows text with grayscale antialiasing, and the third line shows how text on a subpixel display
would render.

Fig 4.10 Different ways text can render on mobile screens

The Microsoft Windows Mobile platform uses the subpixel technique with its Clear-Type technology, as
shown in Figure 4.11.

24

Fig 4.11 Microsoft Clear-Type using sub pixels to sharp text

The second approach is to use a great pixel density, or pixels per inch. We often refer to screens by either
their actual physical dimensions or their pixel dimensions, or resolution. The pixel density is determined by
dividing the width of the display area in pixels by the width of the display area in inches. So the pixel density
for15.4-inchlaptop would be 110 PPI. In comparison, a 1080p HD television has a PPI of 52.

As this applies to mobile devices, the higher the density of pixels, the sharper the screenappears to the
naked eye. This guideline especially applies to type, meaning that as text is antialiased on a screen with a high
density of tiny pixels, the glyph appears sharper to the eye. Some mobile screens have both a high PPI and subpixel
technology, though these are unnecessary together.

Table 4.3 provides the dimensions and PPI for a few mobile devices.

Table 4.3 Dimensions and PPI for some Mobile Devices

Type options
Fortunately, today’s mobile devices have a few more options than a single typeface, butthe options are still

fairly limited. Coming from web design, where we have a dozen or so type options, the limited choices available in
mobile design won’t come as a big surprise. Essentially, we have a few variations of serif, sans-serif, and
monospace fonts, and depending on the platform, maybe a few custom fonts (Figure).

25

Fig 4.12 Options in Typography increase as the device become more sophisticated

Therefore, when creating mobile designs for either web or native experiences, stick with either the default
device font, or web-safe fonts—the basic serif variants like Times New Roman and Georgia or sans-serif typefaces
like Helvetica, Arial, orVerdana.

Font replacement
The ability to use typefaces that are not already loaded on the device varies from model to model and

chosen platform. Some device APIs will allow to load a typeface into native application. Some mobile web
browsers support various forms of fontreplacement; the two most common are sIFR and Cufon. sIFR uses Flash to
replaceHTML text with a Flash representation of the text, but the device ofcourse has to support Flash. Cufon uses
JavaScript and the canvas element draws the glyphs in the browser, but the device of course needs to support both
JavaScript and the canvas element.

In addition, the @font-face CSS rule allows for a typeface file to be referenced and loaded into the
browser, but a license for web use is usually not granted by type foundries.

Readability
The most important role of typography in mobile design is to provide the user with excellent readability, or

the ability to clearly follow lines of text with the eye and not lose one’s place or become disoriented, as shown in
Figure 4.13. This can be done byfollowing these six simple rules:

Fig 4.13 Classics, an iPhone application designed with readability and typography in mind

i. Use a high-contrast typeface

Remember that mobile devices are usually used outside. Having a high-contrast typeface with regard to the
background will increase visibility and readability.

ii. Use the right typeface

The type of typeface you use tells the user what to expect. For example, a sans-serif font is common in
navigation or compact areas, whereas serif typefaces come in handy for lengthy or dense content areas.

iii. Provide decent leading (rhymes with “heading”) or line spacing

Mobile screens are often held 10–12" away from the eye, which can make tracking each line difficult. Increase
the leading to avoid having the users lose their place.

iv. Leave space on the right and left of each line; don’t crowd the screen

26

Most mobile frameworks give you full access to the screen, meaning that you normally need to provide some
spacing between the right and left side of the screen’s edge and text—not much, typically about three to four
character widths.

v. Generously utilize headings

Break the content up in the screen, using text-based headings to indicate to the user what is to come. Using
different typefaces, color, and emphasis in headings can also help create a readable page.

vi. Use short paragraphs

Like on the Web, keep paragraphs short, using no more than two to three sentences per paragraph.

6. Graphics

The final design element is graphics, or the images that are used to establish or aid avisual experience. Graphics
can be used to supplement the look and feel, or as content displayed in line with the text.
For example, in Figure 4.14, we can see Ribot’s Little Spender application for the iPhone and the S60 platform. The
use of graphical icons in the iPhone experience helps to establish a visual language for the user to interact with to
quickly categorize entries.

On the S60 application, the wallet photo in the upper-right corner helps communicate the message of the
application to the user.

Fig 4.14 Ribot’s Little Splendor application uses graphics to define the experience

Iconography
The most common form of graphics used in mobile design is icons. Iconography is useful to communicate

ideas and actions to users in a constrained visual space. The challenge is making sure that the meaning of the icon is
clear to the user. For example, looking at Figure 4.15, we can see some helpful icons that clearly communicate an
idea and some perplexing icons that leave us scratching our head.

27

Fig 4.15 Glyphish provides free iPhone icons

Photos and images
Photos and images are used to add meaning to content, often by showing a visual display of a concept, or

to add meaning to a design. Using photos and images isn’t as common in mobile design as we might think. Because
images have a defined height and width, they need to be scaled to the appropriate device size, either by the server,
using a content adaptation model, or using the resizing properties of the device. In the latter approach, this can
have a cost in performance. Loading larger images takes longer and therefore costs the user more.

Using graphics to add meaning to a design can be a useful visual, but we can encounter issues regarding
how that image will display in a flexible UI—for example, when the device orientation is changed. In Figure 4.16,
we can see how the pig graphic is designedto be positioned to the right regardless of the device orientation.

Fig 4.16 Using Graphics in Multiple Design Orientations

4.5.2 Mobile Design Tools

28

Mobile design requires understanding the design elements and specific tools. The closest thing to a
common design tool is Adobe Photoshop, though each framework has a different method of implementing the
design into the application.

Some frameworks provide a complete interface toolkit, allowing designers or developers to simply piece
together the interface, while others leave it to the designer to define from scratch.

In Table 4.4, we can see each of the design tools and what interface toolkits are available for it.

Table 4.4 Design Tools and Interface Toolkits

All the Best!

29

UNIT 5 – WEB INTERFACE DESIGN

Syllabus: Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual Tools, Overlays, Inlays and Virtual Pages,

Process Flow. Case Studies.

Topics:

5.1Drag and Drop

5.2 Direct Selection

5.3 Contextual Tools

5.4 Overlays

5.5 Inlays

5.6 Virtual Pages

5.7 Process Flow

5.8 Case Studies

5.1 DRAG AND DROP

 One of the great innovations that the Macintosh brought to the world in 1984 was Drag and Drop. Influenced by the

graphical user interface work on Xerox PARC’s Star Information System and subsequent lessons learned from the Apple Lisa,

the Macintosh team invented drag and drop as an easy way to move, copy, and delete files on the user’s desktop.

 In 2000, a small startup, HalfBrain, launched a web-based presentation application, BrainMatter. It was written entirely

in DHTML and used drag and drop as an integral part of its interface.

Interesting Moments

There are a number of individual states at which interaction is possible. We call these microstates interesting

momentsas follows:

• How will users know what is draggable?

• What does it mean to drag and drop an object?

• Where can we drop an object, and where is it not valid to drop an object?

• What visual affordance will be used to indicate draggability?

• During drag, how will valid and invalid drop targets be signified?

• Do we drag the actual object?

• Or do we drag just a ghost of the object?

• Or is it a thumbnail representation that gets dragged?

• What visual feedback should be used during the drag and drop interaction?

What makes it challenging is that there are a lot of events during drag and drop that canbe used as opportunities for feedback

to the user. Additionally, there are a number of elementson the page that can participate as actors in this feedback loop.

The Events

There are at least 15 events available for cueing the user during a drag and drop interaction:

i. Page Load

Before any interaction occurs, we can pre-signify the availability of drag and drop.For example, we could display a tip

on the page to indicate draggability.

ii. Mouse Hover

The mouse pointer hovers over an object that is draggable.

iii. Mouse Down

The user holds down the mouse button on the draggable object.

iv. Drag Initiated

After the mouse drag starts (usually some threshold—3 pixels).

v. Drag Leaves Original Location

After the drag object is pulled from its location or object that contains it.

vi. Drag Re-Enters Original Location

When the object re-enters the original location.

vii. Drag Enters Valid Target

Dragging over a valid drop target.

viii. Drag Exits Valid Target

Dragging back out of a valid drop target.

ix. Drag Enters Specific Invalid Target

Dragging over an invalid drop target.

x. Drag Is Over No Specific Target

Dragging over neither a valid or invalid target. Do we treat all areas outside of validtargets as invalid?

xi. Drag Hovers Over Valid Target

User pauses over the valid target without dropping the object. This is usually when aspring loaded drop target can open

up. For example, drag over a folder and pause, thefolder opens revealing a new area to drag into.

xii. Drag Hovers Over Invalid Target

User pauses over an invalid target without dropping the object.

xiii. Drop Accepted

Drop occurs over a valid target and drop has been accepted.

xiv. Drop Rejected

Drop occurs over an invalid target and drop has been rejected. Do we zoom back the dropped object?

xv. Drop on Parent Container

Is the place where the object was dragged from special? Usually this is not the case,but it may carry special meaning in

some contexts.

The Actors

During each event we can visually manipulate a number of actors. The page elementsavailable include:

i. Page (e.g., static messaging on the page)

ii. Cursor

iii. Tool Tip

iv. Drag Object (or some portion of the drag object, e.g., title area of a module)

v. Drag Object’s Parent Container

vi. Drop Target

Interesting Moments Grid

That’s 15 events times 6 actors. That means there are 90 possible interesting moments—eachrequiring a decision

involving an almost unlimited number of style and timing choices. We can pull all this together into a simple interesting

moment’s grid for Drag and Drop.

Table 5.1 A simplified interesting moments grid for the original My Yahoo! drag and drop design;it provided a way to capture
the complexities of drag and drop into a single page

The grid is a handy tool for planning out interesting moments during a drag and drop interaction. It serves as a checklist

to make sure there are no “holes” in the interaction. Just place the actors along the lefthand side and the moments along the top.

In the grid intersections, place the desired behaviors.

Purpose of Drag and Drop

Drag and drop can be a powerful idiom if used correctly. Specifically it is useful for:

i. Drag and Drop Module

Rearranging modules on a page.

ii. Drag and Drop List

Rearranging lists.

iii. Drag and Drop Object

Changing relationships between objects.

iv. Drag and Drop Action

Invoking actions on a dropped object.

v. Drag and Drop Collection

Maintaining collections through drag and drop.

5.1.2 Drag and Drop Module

One of the most useful purposes of drag and drop is to allow the user to directly placeobjects where she wants them on the

page. A typical pattern is Drag and Drop Moduleson a page. Netvibes provides a good example of this interaction pattern (Figure

5.1).

Fig 5.1 Netvibes allows modules to be arranged directly via drag and drop; the hole cues what will happen when a module is
dropped

Considerations

Netvibes allows its modules to be rearranged with drag and drop. A number of interestingmoments decide the specific

interaction style for this site. Fig 5.2 shows the interestingmoments grid for Netvibes.

Fig 5.2 Interesting moments grid for Netvibes: there are 20 possible moments of interaction;
Netvibes specifically handles 9 of these moments

While dragging, it is important to make it clear what will happen when the user drops thedragged object. There are two

common approaches to targeting a drop:

i. Placeholder target

ii. Insertion target

Placeholder target

Netvibes uses a placeholder (hole with dashed outline) as the drop target. The idea (in Fig5.3) is to always position a

hole in the spot where the drop would occur.

Fig 5.3 A placeholder target always shows where the dragged module will end after the drop; module 1 is being dragged from
the upper right to the position between modules 3 and 4

When module 1 starts dragging, it gets “ripped” out of the spot. In its place is theplaceholder target (dashed outline). As

1 gets dragged to the spot between 3 and 4, theplaceholder target jumps to fill in this spot as 4 moves out of the way.

The hole serves as a placeholder and always marks the spot that the dragged module willland when dropped. It also

previews what the page will look like (in relation to the othermodules) if the drop occurs there. For module drag and drop, the

other modules onlyslide up or down within a vertical column to make room for the dragged module.

One complaint with using placeholder targets is that the page content jumps around a lot during the drag. This makes

the interaction noisier and can make it harder to understandwhat is actually happening. This issue is compounded when modules

look similar. Theuser starts dragging the modules around and quickly gets confused about what just gotmoved. One way to

resolve this is to provide a quick animated transition as the modulesmove. It is important, however, that any animated transitions

not get in the way of thenormal interaction.

There is a point in Figure 5.3 where the placeholder shifts to a new location. The position of the mouse, the boundary

of the dragged object, and the boundary of the dragged-over object can all be used to choose the module’snew location.

Boundary-based placement.

Since most sites that use placeholder targeting drag the modulein its original size, targeting is determined by the

boundaries of the dragged object andthe boundaries of the dragged-over object. The mouse position is usually ignored

becausemodules are only draggable in the title (a small region). Both Netvibes and iGoogletake the boundary-based

approach. But, interestingly, they calculate the position of theirplaceholders differently.

In Netvibes, the placeholder changes position only after the dragged module’s title bar hasmoved beyond the dragged-

over module’s title bar. In practice, this means if we are movinga small module to be positioned above a large module, we have

to move it to the very top ofthe large module.

In contrast, moving the small module below the large module actually requires less drag distance since we only have to

get the title bar of the small module below the title bar of the large module.

This approach to boundary-based drop targeting is non-symmetrical in the drag distancewhen dragging modules up

versus dragging modules down.

Fig 5.4 The Netvibes approach requires the dragged object’s title to be placed above or below a module before the placement
position changes; this results in inconsistent drag distances

A more desirable approach is that taken by iGoogle. Instead of basing the drag on the titlebar, iGoogle calculates the

placeholder targeting on the dragged-over object’s midpoint.

In Fig 5.5, the stock market module is very large (the module just above the moonphase module).

Fig 5.5 When dragging a module downward, iGoogle moves the placeholder when the bottom of the dragged

module crosses the midpoint of the object being dragged over; the distance to accomplish a move is less than in the Netvibes

approach

With the Netvibes approach, we would have to drag the stock module’s title below themoon phase module’s title. iGoogle instead

moves the placeholder when the bottom of thedragged module (stock module) crosses the midpoint of the dragged over module

(moonphase module).

What happens when we head the other way? When we drag the stock module up to place it above the moon phase

module, iGoogle moves the placeholder when the top of the stock module crosses the midpoint of the moon phase module

(Fig5.6).

Fig 5.6 When dragging a module upward, iGoogle moves the placeholder when the top of the dragged module crosses the
midpoint of the object being dragged over; dragging modules up or down requires the same effort, unlike in the Netvibes

example

As Figure 5.7 illustrates, module 1 is dragged from the first column to the second column, the placeholder moves above

module 3. As module 1 is dragged downward, the placeholder moves below 3 and 4 as the bottom of module 1 crosses their

midpoints.

Fig 5.7To create the best drag experience, use the original midpoint location of the module beingdragged over to determine
where to drop the dragged module: module 1 is being dragged into theposition just below module 4

The net result is that the iGoogle approach feels more responsive and requires less mouse movement to position

modules. Figure 5.8 shows the interesting moments grid for the iGoogle drag and drop interaction.

Fig 5.8 Interesting moments grid for iGoogle: as in the Netvibes grid, there are 20 possible moments of interaction; iGoogle

specifically handles 8 of these moments

Insertion target

Placeholder positioning is a common approach, but it is not the only way to indicate drop targeting. An alternate

approach is to keep the page as stable as possible and only move around an insertion target (usually an insertion bar). A previous

version of My Yahoo! used the insertion bar approach as the dragged module was moved around

While the module is dragged, the page remains stable. No modules move around. Instead an insertion bar marks where

the module will be placed when dropped. This technique is illustrated in Figure 5.9. When module 1 is dragged to the position

between 3 and 4, an insertion bar is placed there. This indicates that if 1 is dropped, then 4 will slide down to open up the drop

spot.

Fig 5.9 Using an insertion bar keeps the page stable during dragging a nd makes it clear how things get rearranged when the
module is dropped

Unlike with the placeholder target, the dragged module 1 is usually represented with a slightly transparent version of

the module (also known as ghosting). In the most current version, fullsize module dragging has been replaced with a thumbnail

representation. This is somewhat unfortunate since the small gray outline is not very visible.

As we can see in Fig 5.10, the My Yahoo! page makes different decisions about how drag and drop modules are

implemented as compared to Netvibes and iGoogle.

Fig 5.10 My Yahoo! uses 15 of the possible 32 moments to interact with the user during drag and drop; the biggest difference
between My Yahoo!, Netvibes, and iGoogle is the insertion bar placement—another subtle difference is how drag gets

initiated

Drag distance

Dragging the thumbnail around does have other issues. Since the object being dragged is small, it does not intersect a

large area. It requires moving the small thumbnail directly to the place it will be dropped. With iGoogle, the complete module is

dragged. Since the module will always be larger than the thumbnail, it intersects a drop target with much less movement. The

result is a shorter drag distance to accomplish a move.

Tip- Drag and Drop takes additional mouse dexterity. If possible, shorten the necessary drag distance to target a drop.

Drag rendering

My Yahoo! uses a small gray rectangle to represent a module. Netvibes represents the dragged module in full size as

opaque, while iGoogle uses partial transparency (Fig 5.11). The transparency (ghosting) effect communicates that the object

being dragged is actually a representation of the dragged object. It also keeps more of the page visible, thus giving a clearer

picture of the final result of a drop.

Fig 5.11 On iGoogle the dragged module Top Stories is given transparency to make it easier to see the page and to indicate
that we are in a placement mode

Ghosting the module also indicates that the module is in a special mode. It signals that the module has not been

positioned; instead, it is in a transitional state.

Tip - For Drag and Drop Modules, use the module’s midpoint to control the drop targeting.

Of the various approaches for Drag and Drop Modules, iGoogle combines the best approaches into a single interface:

i. Placeholder targeting

Most explicit way to preview the effect.

ii. Midpoint boundary

Requires the least drag effort to move modules around.

iii. Full-size module dragging

Coupled with placeholder targeting and midpoint boundary detection, it means drag distances to complete a move are

shorter.

iv. Ghost rendering

Emphasizes the page rather than the dragged object. Keeps the preview clear.

5.1.3 Drag and Drop List

Rearranging lists is very similar to rearranging modules on the page but with the added constraint of being in a single

dimension (up/down or left/right). The Drag and Drop List pattern defines interactions for rearranging items in a list. 37 Signal’s

Backpackit allows to-do items to be rearranged with Drag and Drop List (Figure 5.12).

Fig 5.12 Backpackit allows to-do lists be arranged directly via drag and drop

Considerations

Backpackit takes a real-time approach to dragging items. Since the list is constrained, this is a natural approach to

moving objects around in a list. We immediately see the result of the drag.

Placeholder target

This is essentially the same placeholder target approach we discussed earlier for dragging and dropping modules. The

difference is that when moving an item in a list, we are constrained to a single dimension. Less feedback is needed. Instead of a

“ripped-out” area (represented earlier with a dotted rectangle), a simple hole can be exposed where the object will be placed

when dropped.

 A good example from the desktop world is Apple’s iPhoto. In a slideshow, we can easily rearrange the order of photos

with drag and drop. Dragging the photo left or right causes the other photos to shuffle open a drop spot.

The difference between iPhoto and Backpackit is that instead of using the dragged photo’s boundary as the

trigger for crossing a threshold, iPhoto uses the mouse cursor position. In the top row of Figure 5.13, the user clicked on the

right side of the photo. When the cursor crosses into the left edge of the next photo, a new space is opened. In the bottom row, the

user clicked on the top left side of the photo. Notice in both cases it is the mouse position that determines when a dragged photo

has moved into the space of another photo, not the dragged photo’s boundary.

Figure 5.13 iPhoto uses cursor position: when the cursor crosses a threshold (the edge of the next photo), a new position is
opened up

Insertion target

Just as with Drag and Drop Modules, placeholder targeting is not the only game in town. We can also use an insertion

bar within a list to indicate where a dropped item will land. Netflix uses an insertion target when movies are dragged to a new

location in a user’s movie queue (Figure 5.14).

Fig 5.14 A Netflix queue can be rearranged via drag and drop

The upside to this approach is that the list doesn’t have to shuffle around during drag. The resulting experience is

smoother than the Backpackit approach. The downside is that it is not as obvious where the movie is being positioned. The

insertion bar appears under the ghosted item. The addition of the brackets on the left and right of the insertion bar is an attempt to

make the targeting clearer

Non–drag and drop alternative

Besides drag and drop, the Netflix queue actually supports two other ways to move objects around:

• Edit the row number and then press the “Update DVD Queue” button.

• Click the “Move to Top” icon to pop a movie to the top.

Modifying the row number is straightforward. It’s a way to rearrange items without drag and drop. The “Move to Top”

button is a little more direct and fairly straightforward (if the user really understands that this icon means “move to top”). Drag

and drop is the least discoverable of the three, but it is the most direct, visual way to rearrange the list. Since rearranging the

queue is central to the Netflix customer’s satisfaction, it is appropriate to allow multiple ways to do so.

Hinting at drag and drop

When the user clicks the “Move to Top” button, Netflix animates the movie as it moves up. But first, the movie is

jerked downward slightly and then spring-loaded to the top.

Click “Move to Top”:

Clicking the “Move to Top”button starts the movie movingto the top.

Spring loaded:

The movie does not immediatelystart moving up. Instead,it drops down and tothe right slightly. This gives the feeling

that the movie isbeing launched to the top.

Animated move to top:

The movie then animates veryquickly to show it is movingto the top.

The combination of the downward jerk and then the quick animation to the top gives a subtle clue that the object is

draggable. This is also an interesting moment to advertise drag and drop. After the move to top completes, a simple tip could

appear to invite users to drag and drop. The tip should probably be shown only once, or there should be a way to turn it off.

Providing an invitation within a familiar idiom is a good way to lead users to the new idiom.

Tip:If drag and drop is a secondary way to perform a task, use the completion of the familiartask as an opportunity invite the user

to drag and drop the next time.

Drag lens

Drag and drop works well when a list is short or the items are all visible on the page. But when the list is long, drag and

drop becomes painful. Providing alternative ways to rearrange is one way to get around this issue. Another is to provide a drag

lens while dragging.

A drag lens provides a view into a different part of the list that can serve as a shortcut target. It could be a fixed area

that is always visible, or it could be a miniature view of the list that provides more rows for targeting. The lens will be made

visible only during dragging. A good example of this is dragging the insertion bar while editing text on the iPhone (Figure 5.15).

Figure 5.15 The iPhone provides a drag magnifier lens that makes it easier to position the cursor

 Drag and Drop Object

Another common use for drag and drop is to change relationships between objects. This is appropriate when the

relationships can be represented visually. Drag and drop as a means of visually manipulating relationships is a powerful tool.

Cogmap is a wiki for organizational charts. Drag and Drop Object is used to rearrange members of the organization.

Considerations

When object relationships can be clearly represented visually, drag and drop is a natural choice to make these types of

changes. Cogmap uses the target insertion approach. This allows the dragging to be nondistracting, since the chart does not have

to be disturbed during targeting.

Drag feedback: Highlighting

Bubbl.us, an online mind-mapping tool, simply highlights the node that will be the new parent (Figure 5.16).

Fig 5.16 Bubbl.us provides a visual indication of which node the dropped node will attach itself to

In both cases, immediate preview is avoided since it is difficult to render the relationships in real time without

becoming unnecessarily distracting.

Looking outside the world of the Web, the desktop application Mind Manager also uses highlighting to indicate the

parent in which insertion will occur. In addition, it provides insertion targeting to give a preview of where the employee will be

positioned once dropped (Figure 5.17).

Fig 5.17 Mind Manager is a desktop tool that uses a combination of insertion targeting plus a clear preview of the drop

Drag feedback:Dragged object versus drop target

As we mentioned at the beginning of this chapter, one of the first serious uses for drag and drop was in the Oddpost

web mail application. Oddpost was eventually acquired by Yahoo! and is now the Yahoo! Mail application. Yahoo! Mail uses

drag and drop objects for organizing email messages into folders.

Drag initiated:

When a message drag is initiated,a snippet of the messageis shown, along withan icon denoting whether adrop can be

made.

Valid drop target:

When the dragged messagemay be dropped, theicon portion of the draggedobject changes from ared invalid sign to a

greencheckmark.

Instead of signaling that a drop is valid or invalid by changing the visual appearance of the area dragged over, Yahoo!

Mail shows validity through the dragged object.

When a drop will be invalid:

• The dragged object’s icon becomes a red invalid sign.

• If over an invalid folder, the folder is highlighted as well.

When a drop will be valid:

• The dragged object’s icon changes to a green checkmark.

• The drop target highlights.

Another approach is to signal both validity and location in the drop target itself. In this case we would highlight the

valid drop target when it is dragged over and not highlight the drop target if it is invalid. In Yahoo! Mail’s interaction, the

signaling of validity and where it can be dropped are kept separate. This allows a drag to indicate that a target is a drop target,

just not valid for the current object being dragged.

One odd situation occurs when we first start dragging a message and then later drag it back into the inbox area. At first

it shows the inbox as an invalid drop area. Then it shows it as a valid drop area. Here the interface needs to display the same

indicator in both cases.

Drag feedback: Drag positioning

Another slightly troublesome approach is positioning the dragged object some distance away from the mouse. The

reason the object is positioned in this manner is to avoid obscuring dragged-over folders. While this may alleviate that problem, it

introduces a second problem: when we initiate the drag, the dragged message jumps into the offset position. Instead of conveying

that the first message in the list is being dragged, it feels like the second message in the list is being dragged.

Drag feedback: Drag start

In Yahoo! Mail, message dragging is initiated when the mouse is dragged about four or five pixels.

A good rule of thumb on drag initiation comes from the Apple Human Interface Guidelines: Your application should

provide drag feedback as soon as the user drags an item at least three pixels. If a user holds the mouse button down on an object

or selected text, it should become draggable immediately and stay draggable as long as the mouse remains down.

 It might seem like a small nit, but there is quite a difference between starting a drag after three pixels of movement

versus four or five pixels. The larger value makes the object feel hard to pull out of its slot to start dragging. On the flip side,

starting a drag with too small a value can cause drag to initiate accidentally, usually resulting in the interface feeling too finicky.

Tip - Start a drag when the object is dragged three pixels or the mouse is held down for halfa second.

Drag and Drop Action

Drag and drop is also useful for invoking an action or actions on a dropped object. The Drag and Drop Action is a

common pattern. Its most familiar example is dropping an item in the trash to perform the delete action. Normally uploading files

to a web application includes pressing the upload button and browsing for a photo. This process is repeated for each photo.

When Yahoo! Photos was relaunched in 2006, it included a drag and drop upload feature. It allowed the user to drag

photos directly into the upload page. The drop signified the upload action (Figure 2-30).

Normal display state:

“Add Photos” allows either browsing for photos or simply dragging anddropping them into the target zonebelow.

Invitation to drag:

The invitation is clear. By using thedrop target area as an advertisementfor the drag feature, the process is discoverable

(as well as natural).

Dropped:

Photos dropped are collected into anupload area. Pressing “Start Upload” starts the uploading process.

Completed:

All items are marked complete when finished.

Considerations

This is not a trivial implementation. But it does clearly illustrate the benefit of drag and drop for operating on a set of

files. The traditional model requires each photo to be selected individually for upload. Drag and drop frees us to use whatever

browsing method is available on our system and then drop those photos for upload.

Anti-pattern: Artificial Visual Construct

Unfortunately, drag and drop can sometimes drive the design of an interface instead of being an extension of a natural

interface. These interactions are almost always doomed, as they are the tail wagging the proverbial dog. Rating movies, books,

and music is a common feature found on many sites. But what happens if we try to use drag and drop to rate movies?

While this certainly would work, it is wrong for several reasons:

Non-obvious:

Requires some additional instructions to “Drag the DVDs into the boxes below” in order for the user to know how to

rate the movies.

Too much effort:

Requires too much user effort for a simple task. The user needs to employ mouse gymnastics to simply rate a movie.

Drag and drop involves these discrete steps: target, then drag, then target, and then drop. The user has to carefully pick the movie,

drag it to the right bucket, and release.

Too much space:

Requires a lot of visual space on the page to support the idiom. Is it worth this amount of screen real estate?

Direct rating systems (thumbs up/down, star ratings, etc.) are a much simpler way to rate a movie than using an

Artificial Visual Construct. A set of stars is an intuitive, compact, and simple way to rate a movie.

This method still falls way short since the amount of space needed for this far outweighs simpler approaches such as

providing an action button for the selected objects.

Tip - Drag and drop should never be forced. Don’t create an artificial visual construct to support it.

Natural Visual Construct

Another example of Drag and Drop Action is demonstrated in Google Maps. A route is visually represented on the map

with a dark purple line. Dragging an arbitrary route point to a new location changes the route in real time (Figure 5.18).

Fig 5.18 Rerouting in Google Maps is as simple as drag and drop

This is the opposite of the Artificial Visual Construct anti-pattern. The route is a Natural Visual Construct. Since

anywhere along the route is draggable, there are a lot of opportunities to discover the rerouting bubble. When the route is being

dragged, Google dynamically updates it. The constant feedback forms the basis of a Live Preview.

 Drag and Drop Collection

A variation on dragging objects is collecting objects for purchase, bookmarking, or saving into a temporary area. This

type of interaction is called Drag and Drop Collection. Drag and drop is a nice way to grab items of interest and save them to a

list. The Laszlo shopping cart example illustrates this nicely (Figure 5.19).

Fig 5.19 This Laszlo shopping cart demo uses both drag and drop and a button action to add items
to its shopping cart

Considerations

There are a few issues to consider in this example.

Discoverability

Drag and drop is a natural way collect items for purchase. It mimics the shopping experience in the real world. Grab an

item. Drop it in our basket. This is fast and convenient once we know about the feature. However, as a general rule, we should

never rely solely on drag and drop for remembering items.

Parallel, more explicit ways to do the same action should be provided. In this example, Laszlo provides an alternative to dragging

items in the cart. Notice the “+ cart” button in Figure 5.19. Clicking this button adds the item to the shopping cart.

Teachable moment

When providing alternates to drag and drop, it is a good idea to hint that dragging is an option. In the Laszlo example,

clicking the “+ cart” button causes the shopping cart tray to bump slightly open and then closed again. This points to the

physicality of the cart. Using another interaction as a teachable moment to guide the user to richer interactions is a good way to

solve discoverability issues.

 The Challenges of Drag and Drop

As we can see from the discussion in this chapter, Drag and Drop is complex. There are four broad areas where Drag

and Drop may be employed: Drag and Drop Module, Drag and Drop List, Drag and Drop Object, and Drag and Drop

Action. And in each area, there are a large number of interesting moments that may be handled in numerous ways. Being

consistent in visual and interaction styles across all of these moments for all of these types of interactions is a challenge in itself.

And keeping the user informed throughout the process with just the right amount of hints requires design finesse.

5.2 DIRECT SELECTION

When the Macintosh was introduced, it ushered into the popular mainstream the ability to directly select objects and

apply actions to them. Folders and files became first-class citizens. Instead of a command line to delete a file, we simply dragged

a file to the trash.

Treating elements in the interface as directly selectable is a clear application of the Make It Direct principle. On the

desktop, the most common approach is to initiate a selection by directly clicking on the object itself. We call this selection pattern

Object Selection.

Types of selection patterns:

Toggle Selection

Checkbox or control-based selection.

Collected Selection

Selection that spans multiple pages.

Object Selection

Direct object selection.

Hybrid Selection

Combination of Toggle Selection and Object Selection.

5.2.1 Toggle Selection

The most common form of selection on the Web is Toggle Selection. Checkboxes and toggle buttons are the familiar

interface for selecting elements on most web pages. An example is Yahoo! Mail Classic.

Fig 5.20 In Yahoo Mail Classic a mail message can be selected by clicking on the corresponding row’s checkbox

The way to select an individual mail message is through the row’s checkbox. Clicking onthe row itself does not select

the message. We call this pattern of selection Toggle Selectionsince toggle-style controls are typically used for selecting items.

Tip -Toggle Selection is the easiest way to allow discontinuous selection.

Once items have been check-selected, actions can be performed on them. Usually these actions are performed on the

selection by clicking on a separate button (e.g., the Delete button). Gmail is a good example of actions in concert with Toggle

Selection.

Fig 5.21 Gmail uses checkbox selection to operate on messages

Action completed

The two selected email messages have beendeleted.

Considerations

Toggle Selection with checkboxes has some nice attributes:

• Clear targeting, with no ambiguity about how to select the item or deselect it.

• Straightforward discontinuous selection, and no need to know about Shift or Controlkey ways to extend a selection.

Just click the checkboxes in any order, either in a continuous or discontinuous manner.

• Clear indication of what has been selected.

Scrolling versus paging

The previous examples were with paged lists. Yahoo! Mail uses a scrolled list to show all of its mail messages. While

not all messages are visible at a time, the user knows that scrolling through the list retains the currently selected items. Since the

user understands that all the messages not visible are still on the same continuous pane, there is no confusion about what an

action will operate on—it will affect all selected items in the list. Sometimes the need for clarity of selection will drive the choice

between scrolling and paging.

Fig 5.22 Yahoo! Mail uses a scrolled list for its messages; selection includes what is in the visible part of the list as

well as what is scrolled out of view

Making selection explicit

With Yahoo! Bookmarks we can manage bookmarks by selecting bookmarked pages and then acting on them. The

selection model is visually explicit (Figure 3-6).

Fig 5.23 Yahoo! Bookmarks explicitly displays the state of the selection

The advantage of this method is that it is always clear how many items have been selected. Visualizing the underlying

selection model is generally a good approach. This direct approach to selection and acting on bookmarks creates a

straightforward interface.

One interesting question: what happens when nothing is selected? One approach is to disable any actions that require at

least one selected item. Yahoo! Bookmarks takes a different approach. Since buttons on the Web do not follow a standard

convention, we often can’t rely on a color change to let us know something is not clickable. Yahoo! Bookmarks chose to make

selection very explicit and make it clear when a command is invalid because nothing is selected (“No selection” in Figure 5.23).

This is not normally the optimal way to handle errors. Generally, the earlier we can prevent errors, the better the user experience.

Netflix disables the “Update DVD Queue” button when nothing is selected and enables it when a movie gets selected

(Figure 5.24).

Fig 5.24 When nothing is selected, Netflix disables the “Update DVD Queue” button to prevent errors early

5.2.2 Collected Selection

Toggle Selection is great for showing a list of items on a single page. But what happens if we want to collect selected

items across multiple pages? Collected Selection is a pattern for keeping track of selection as it spans multiple pages. In Gmail,

we can select items as we move from page to page. The selections are remembered for each page. If we select two items on page

one, then move to page two and select three items, there are only three items selected. This is because actions only operate on a

single page. This makes sense, as users do not normally expect selected items to be remembered across different pages.

Considerations

Gmail does provide a way to select all items across different pages. When selecting all items on an individual page

(with the “All” link), a prompt appears inviting the user to “Select all 2785 conversations in Spam”. Clicking that will select all

items across all pages (Figure 5.25). The “Delete Forever” action will operate on all 2785 conversations, not just the 25 selected

on the page.

Fig 5.25 Gmail provides a way to select all items across all pages, allowing the user to delete all items in a folder

without having to delete all items on each page individually

Keeping the selection visible

The real challenge for multi-page selection is finding a way to show selections gathered across multiple pages. We

need a way to collect and show the selection as it is being created. Here is one way that Collected Selection comes into play.

LinkedIn uses Collected Selection to add potential contacts to an invite list (Figure 5.26).

Fig 5.26 LinkedIn provides a holding place for saving selections across multiple pages

The list of potential invitees is shown in a paginated list on the lefthand side. Clicking the checkbox adds them to the

invite list. The invite list becomes the place where selected contacts across multiple pages are remembered.

Any name in the invite list can be removed by clicking the “X” button beside it. Once the complete list of invitees is

selected, clicking the “Invite selected contacts” sends each selected contact a LinkedIn invitation. Collected Selection and

actions

When Yahoo! Photos was working its way through an early design of its Photo Gallery, the plan was to show all photos

in a single, continuous scrolling page. In a long virtual list, the selection model is simple. Photos are shown in a single page and

selection is easily understood in the context of this single page.

However, due to performance issues, the design was changed. Instead of a virtual page, photos had to be chunked into

pages. In order to support Collected Selection, Yahoo! Photos introduced the concept of a “tray” into the interface (Figure 5.27).

On any page, photos can be dragged into the tray. The tray keeps its contents as the user moves from page to page. So, adding a

photo from page one and three more from page four would yield four items in the tray. As a nice touch, the tray would make

itself visible (by sliding into view) even when the user was scrolled down below the fold.

Fig 5.27 Yahoo! Photos used a “tray” to implement a form of Collected Selections; the confusing aspect was which

actions in the menu operated on the tray versus the photos selected on the page

There was a problem with the design, however. In the menu system it was hard to discern whether the user meant to

operate on the selection (photos on the page could be selected through an Object Selection model) or on the collected items in the

tray. To resolve this ambiguity, the drop-down menus contained two identical sets of commands. The first group of commands in

the menu operated on the collected items in the tray. The second set of commands operated on the selected objects. Needless to

say, this was confusing since it required the user to be fully aware of these two selection models when initiating a command.

One way to remove this ambiguity would have been to have a single set of commands that operated on either the tray or

the photos—depending on which had the focus. This would require a way to select the tray and a way to deselect it (by clicking

outside the tray). A possible approach would be to slightly dim the photo gallery when the tray is selected (causing it to clearly

have the focus), and do the opposite when the tray is not the focus.

3.2.3 Object Selection

Fig 5.28 Laszlo Web Top Mail uses highlighting to indicate row selection

As we mentioned earlier, Toggle Selection is the most common type of selection on the Web. The other type of

selection, Object Selection, is when selection is made directly on objects within the interface.

Sometimes using a checkbox does not fit in with the style of interaction desired. Laszlo’s WebTop mail allows the user

to select messages by clicking anywhere in the row. The result is that the whole row gets highlighted to indicate selection (Figure

5.28).

Considerations

Desktop applications tend to use Object Selection. It is also natural that web-based mail applications that mimic

desktop interactions employ this same style of selection. Instead of showing a control (like a checkbox), the object itself can be

selected and acted on directly.

Object Selection can be extended by holding down the Shift key while clicking on a different item. The Command key

(Macintosh) or Control key (Windows) can be used to individually add items in a discontinuous manner. The downside to this

approach is that it is not obvious to use the modifier keys for extending the selection. Toggle Selection’s use of toggle buttons

makes the selection extension model completely obvious.

Flickr is a simple example of the keyboard being used to extend the selection in a web application. In the Organizr tool,

multiple photos can be selected by using modifier keys to extend the selection (Figure 5.29).

Fig 5.29 Flickr allows for discontinuous selection by using the Command/Control key to extend

Desktop-style selection

For now Object Selection is not as common on the Web. Given that most sites have been content-oriented, there have

been few objects to select. Also, with the Web’s simple event model, Object Selection was not easy to implement. In typical web

pages, keyboard events have rarely made sense since they are also shared with the browser. However, all of this is changing as

the capabilities of web technologies continue to improve.

Fig 5.30 Yahoo! Photos 3.0 created a rich drag selection mechanism for selecting photos

Most desktop Object Selection interactions include ways to use the mouse to drag-select objects. Yahoo! Photos

introduced this same type of object selection to its photo gallery (Figure 5.30). Individually clicking on a photo selects it. Using

the Shift key and clicking also extends the selection. In addition, using the Control key and clicking discontinuously selects

photos. And like most desktop applications, we can drag a selection box around a group of items to add them to the selected set

(in this case, photos).

3.2.4 Hybrid Selection

Mixing Toggle Selection and Object Selection in the same interface can lead to a confusing interface. Referring back to

Yahoo! Bookmarks, we’ll see an odd situation arise during drag and drop (Figure 5.31).

Fig 5.31 In Yahoo! Bookmarks, one item is selected, but two items can be dragged by dragging on the unselected item

Considerations

There are a few important issues to consider when using Hybrid Selection.

Confusing two models

In the left panel of Figure 3-14, one bookmark element is selected (notice the checkbox Toggle Selection). The second

bookmark element (“Dr. Dobb’s”) is unselected (the checkbox is clear). In the right panel of Figure 3-14, clicking and dragging

on the unselected bookmark element initiates a drag. The drag includes both the selected element and the unselected element.

Since only one is shown as selected, this creates a confusing situation.

This occurs because three things are happening in the same space:

• Toggle Selection is used for selecting bookmarks for editing, deleting, etc.

• Object Selection is used for initiating a drag drop.

• Mouse click is used to open the bookmark on a separate page.

The problem is that more than one interaction idiom is applied to the same place on the same page. In this case, if we

happen to try to drag, but instead click, we will be taken to a new page. And if we drag an unselected item, we now have two

items selected for drag but only one shown as selected for other operations (Figure 3-14, right). This is definitely confusing.

Simply selecting the item (automatically checking the box) when the drag starts would keep the selection model consistent in the

interface. However, it might lead the user to expect a single click to also do the same (which it cannot since it opens the

bookmark).

So, mixing the two selection models together can be problematic. However, there is a way to integrate the Toggle

Selection and Object Selection and have them coexist peacefully as well as create an improved user experience.

Blending two models

Yahoo! Mail originally started with the Toggle Selection model (Figure 5.32). When the new Yahoo! Mail Beta was

released, it used Object Selection exclusively (Figure 5.33). But since there are advantages to both approaches, the most recent

version of Yahoo! Mail incorporates both approaches in a Hybrid Selection (Figure 3-17).

Fig 5.32 Yahoo! Mail Classic uses Toggle Selection; it also highlights selected rows, but rows can only be selected by

clicking the message’s checkbox

Fig 5.33 Yahoo! Mail Beta launched with Object Selection; no checkboxes were provided, and discontiguous selection

could only be done by using keyboard modifiers

Fig 5.34 Yahoo! Mail now uses a hybrid approach; it incorporates both the Toggle Selection and the Object Selection

patterns; Toggle Selection selects the message without loading the message in the viewing pane

Hybrid Selection brings with it the best of both worlds. We can use the checkbox selection model as well as normal

row selection. We get the benefit of explicit selection and simplified multiple selections that Toggle Selection brings. And we get

the benefit of interacting with the message itself and direct object highlighting.

Tip - Combining Toggle Selection and Object Selection is a nice way to bridge a common web idiom with a common desktop

idiom.

There is an additional meaning applied to Toggle Selection versus Object Selection. Clicking on a row with the

checkbox has the benefit of selecting the message without loading its contents in the message pane (think spam!). Clicking on a

message it will load the contents in the message pane.

**

5.3 CONTEXTUAL TOOLS

5.3.1 Interaction in Context

Desktop applications separate functionality from data. Menu bars, toolbars, and palettes form islands of application

functionality. Either the user chooses a tool to use on the data or makes a selection and then applies the tool.

Early websites were just the opposite. They were completely content-oriented. Rich tool sets were not needed for

simply viewing and linking to content pages. Even in e-commerce sites like Amazon or eBay, the most functionality needed was

the hyperlink and “Submit” button.

Touch-based interfaces were the stuff of research labs and, more recently, interesting YouTube videos. But now they’re

as close as our phones. Most notably, the Apple iPhone brought touch to the masses (Figure 5.35).

Gesture-based interfaces seemed even further out. Yet these became reality with the Nintendo Wii.

With both gesture and touch-based interfaces, interaction happens directly with the content.

Fig 5.35 The Apple iPhone introduced touch-based interfaces to the consumer market

5.3.2 Fitts’s Law

Fitts’s Law is an ergonomic principle that ties the size of a target and its contextual proximity to ease of use. Bruce

Tognazzini restates it simply as:

The time to acquire a target is a function of the distance to and size of the target.

In other words, if a tool is close at hand and large enough to target, then we can improve the user’s interaction. Putting

tools in context makes for lightweight interaction.

5.3.3 Contextual Tools

Contextual Tools are the Web’s version of the desktop’s right-click menus. Instead of having to right-click to reveal a

menu, we can reveal tools in context with the content. We can do this in a number of ways:

i. Always-Visible Tools

Tools Place Contextual Tools directly in the content.

ii. Hover-Reveal Tools

Show Contextual Tools on mouse hover.

iii. Toggle-Reveal Tools

A master switch to toggle on/off Contextual Tools for the page.

iv. Multi-Level Tools

Progressively reveal actions based on user interaction.

v. Secondary Menus

Show a secondary menu (usually by right-clicking on an object).

5.3.4 Always-Visible Tools

The simplest version of Contextual Tools is to use Always-Visible Tools. Digg is an example of making Contextual

Tools always visible (Figure 5.36).

Fig 5.36 Digg’s “dig it” button is a simple Contextual Tool that is always visible

Considerations

The “digg it” button and Digg scorecard provide Always-Visible Tools next to each story.

Clear call to action

Why not hide the tools and only reveal them when the mouse is over the story? Since digging stories is central to the

business of Digg, always showing the tool provides a clear call to action. There are other actions associated with news stories

(comments, share, bury, etc.) but they are represented less prominently. In the case of Digg, the designers chose to show these at

all times. An alternate approach would be to hide them and show them on mouse hover (we will discuss this approach in the next

section). It turns out that voting and rating systems are the most common places to make tools always visible. Netflix was the

earliest to use a one-click rating system

Relative importance

The “digg it” action is represented as a button and placed prominently in the context of the story. The “bury it” action is

represented as a hyperlink along with other “minor” actions just below the story. The contrast of a button and a hyperlink as well

as its placement gives a strong indication as to the relative importance of each action.

Discoverability

Discoverability is a primary reason to choose Always-Visible Tools. On the flip side, it can lead to more visual clutter.

In the case of Digg and Netflix, there is a good deal of visual space given to each item (story, movie). But what happens when the

items we want to act on are in a list or table?

Generally Contextual Tools in a list work well when the number of actions is kept to a minimum. Gmail provides a

single Always-Visible Tool in its list of messages—the star rating—for flagging emails (Figure 5.37).

Fig 5.37 Google Mail uses contextual tools to flag favorites

Simply clicking the star flags the message as important. The unstarred state is rendered in a visually light manner,

which minimizes the visual noise in the list.

5.3.5 Hover-Reveal Tools

Instead of making Contextual Tools always visible, we can show them on demand. One way to do this is to reveal the

tools when the user pauses the mouse over an object. The Hover-Reveal Tools pattern is most clearly illustrated by 37 Signal’s

Backpackit (Figure 5.38). To-do items may be deleted or edited directly in the interface. The tools to accomplish this are revealed

on mouse hover.

Fig 5.38 Backpackit reveals its additional tools on mouse hover

Considerations

The gray bar on the left is a nice visual reinforcement for the interaction. By allowing the tools to “cut” into the sidebar,

the designers draw our eye to the available tools. The light yellow background draws attention to the to-do item being acted on.

These two simple treatments make it clear which line has the focus and that additional tools have been revealed.

Visual noise

Showing the items on hover decreases the visual noise in the interface. Imagine if instead the delete and edit actions

were always shown for all to-do items. Yahoo! Buzz reveals its tools on mouse hover for both its Top Searches (Figure 5.39) and

Top Stories (Figure 5.40).

Fig 5.39 Yahoo! Buzz reveals additional tools for the top searches when the user hovers over each item

Fig 5.40 Yahoo! Buzz high lights the row and brings in additional tools

For Top Searches, it is important to keep the top-ten list as simple as possible. Showing tools would compete with the

list itself. Since the actions “Search Results” and “Top Articles” (Figure 4-10, right) are less important, they are revealed on

hover. The actions may be important, but making the content clear and readable is a higher priority.

Similarly, for Top Stories, Yahoo! Buzz shows only “Share”, “Post”, and “Buzz Down” tools on hover. “Buzz Up” is

shown at all times, but gets extra visual treatment on mouse hover (Figure 4-11, right). “Buzz Up” is important enough to show at

all times, but can be toned down when not the focus.

Discoverability

A serious design consideration for Hover-Reveal Tools is just how discoverable the additional functionality will be.

While the Contextual Tools are revealed on hover, the checkbox is always visible for each to-do item. To check off an item, users

have to move the mouse over it. When they do, they will discover the additional functionality.

Contextual Tools in an overlay

Sometimes there are several actions available for a focused object. Instead of placing tools beside the object being

acted on, the revealed tools can be placed in an overlay. However, there can be issues with showing contextual tools in an

overlay:

1. Providing an overlay feels heavier. An overlay creates a slight contextual switch for the user’s attention. 2. The

overlay will usually cover other information—information that often provides context for the tools being offered.

3. Most implementations shift the content slightly between the normal view and the overlay view, causing the users to

take a moment to adjust to the change.

4. The overlay may get in the way of navigation. Because an overlay hides at least part of the next item, it becomes

harder to move the mouse through the content without stepping into a “landmine.”

5.3.6 Toggle-Reveal Tools

A variation on the two previous approaches is to not show any Contextual Tools until a special mode is set on the page.

A good example of Toggle-Reveal Tools is in Basecamp’s category editing (Figure 5.41).

Fig 5.41 Basecamp reveals category-editing tools only when the edit mode is turned on for the area

Considerations

Here are a few considerations to keep in mind when using Toggle-Reveal Tools.

Soft mode

Generally, it is a good thing to avoid specific modes in an interface. However, if a mode is soft it is usually acceptable.

By “soft” we mean the user is not trapped in the mode. With Basecamp, the user can choose to ignore the tools turned on. It just

adds visual noise and does not restrict the user from doing other actions. This is a nice way to keep the interaction lightweight.

It is common, however, to want to click through and see the contents of a category (the category is always

hyperlinked). Hence, make it readable and easily navigable in the normal case—but still give the user a way to manage the items

in context. Google Reader could potentially be improved in this manner. In the current interface, clicking “Manage

Subscriptions” takes the user to another page to edit subscriptions. One possible change is the addition of an “edit” button that

toggles in a set of context tools for each subscription (Figure 5.42). This would allow the user to rename and unsubscribe without

leaving the context of the reading pane.

Fig 5.42 Adding an “edit” link to Google Reader’s feed list and toggling in common actions could potentially make it

easier to manage subscriptions

5.3.7 Multi-Level Tools

Contextual Tools can be revealed progressively with Multi-Level Tools. Songza provides a set of tools that get

revealed after a user clicks on a song. Additional tools are revealed when hovering over the newly visible tools.

Considerations

Songza reveals the four options “play”, “rate”, “share”, and “add to playlist” after the user clicks on a song title.

Hovering over “share” or “rate” reveals a secondary set of menu items (Figure 5.43, center).

Fig 5.43 Songza uses a multi-level contextual tool menu

Radial menus

Radial menus such as in Songza have been shown to have some advantages over more traditional menus. First,

experienced users can rely on muscle memory rather than having to look directly at the menu items. Second, the proximity and

targeting size make the menu easy to navigate since the revealed menu items are all equally close at hand (recall Fitts’s Law).

The one potential downside to this approach is that rating a song requires several steps: an initial click on the song, moving the

mouse over the “rate” menu item, then clicking either the thumbs up or thumbs down option. If rating songs was an important

activity, the extra effort might prevent some users from doing so. An alternate approach would be to replace “rate” directly with

the thumbs up and the thumbs down options.

Activation

Another interesting decision Songza made was to not activate the radial menu on hover. Instead, the user must click on

a song to reveal the menu. Activating on click makes the user intent more explicit. Making activation more explicit avoids the

issues described earlier in the Hover and Cover anti-pattern. The user has chosen to interact with the song. Conversely, with a

mouse hover, it’s never quite clear if the user meant to activate the menu or just happened to pause over a song title.

Default action

However, this does mean there is no way to start a song playing with just a simple click. Playing a song requires

moving to the top leaf. One possible solution would be to place the “play” option in the middle of the menu (at the stem) instead

of in one of the leaves. Clicking once would activate the menu. Clicking a second time (without moving the mouse) would start

playing the song. This interaction is very similar to one commonly used in desktop applications: allowing a double-click to

activate the first item (default action) in a right-click menu.

Contextual toolbar

Picnik is an online photo-editing tool that integrates with services like Flickr. In all, there are six sets of tools, each with

a wide range of palette choices. Picnik uses Multiple-Level Tools to expose additional functionality. By wrapping the photo with

tools in context and progressively revealing the levels of each tool, Picnik makes editing straightforward (Figure 5.44).

Fig 5.44 Picnik wraps layers of Contextual Tools around the image being edited

Muttons

Another variation on Multi-Level Tools is the “mutton” (menu + button = mutton). Muttons are useful when there are

multiple actions and we want one of the actions to be the default. Yahoo! Mail uses a mutton for its “Reply” button (Figure 5.45).

Fig 5.45 Yahoo! Mail’s “Reply” button looks like a drop-down when hovered over; clicking “Reply” relies to sender,

and clicking the drop-down offers the default action as well as “Reply to All”

 Clicking “Reply” performs the individual reply. To reply to all, the menu has to be activated by clicking on the drop-

down arrow to show the menu.

Muttons are used to:

• Provide a default button action (“Reply to Sender”)

• Provide a clue that there are additional actions

• Provide additional actions in the drop-down

If muttons are not implemented correctly, they can be problematic for those using accessibility technologies. Because an earlier

version of Yahoo! Mail did not make the mutton keyboard accessible, Yahoo!’s accessibility guru, Victor Tsaran, was convinced

that there was no “Reply to All” command in the Yahoo! Mail interface. Anti-

 Secondary Menu

Desktop applications have provided Contextual Tools for a long time in the form of Secondary Menus. These menus

have been rare on the Web. Google Maps uses a secondary menu that is activated by a right-click on a route. It shows additional

route commands (Figure 5.46).

Fig 5.46 Google Maps uses a right-click menu to add new route stops or to adjust the map around the current point on

the route

Considerations

Secondary Menus have not been common in web applications.

Conflict with browser menu

One problem is the browser inserts its own right-click menu. Replacing the menu in normal content areas can confuse

users, as they may not know if the standard browser menu or the application-specific menu will be shown. It will depend on

whether it is clear that an object exists in the interface (as in the route line above), and if the menu is styled differently enough to

disambiguate the menus.

Discoverability

As a general rule, never put anything in the Secondary Menu that can’t be accomplished elsewhere. Secondary Menus

are generally less discoverable. More advanced items or shortcuts, however, can be placed in the Secondary Menu as an alternate

way to accomplish the same task.

Accessibility

Right-click is not the only way to activate a Secondary Menu. We can activate the menu by holding down the mouse

for about one second. This provides a more accessible approach to popping up a Secondary Menu. This technique is used in the

Macintosh Dock. Clicking and holding down on an application in the dock will reveal the Secondary Menu without requiring a

right-click activation.

Acting on multiple objects Keep in mind that all of the other Contextual Tools presented in this chapter have a limitation on the

number of items they can operate on. Always-Visible Tools, Hover-Reveal Tools, Toggle-Reveal Tools, and Multi-Level Tools

all operate on a single item at a time (even Toggle-Reveal Tools just shows a tool per item). Secondary Menus are different. They

can be combined with a selection model (as described in Chapter 3) to perform actions on selected set of items.

Four ways to keep the user on the page:

Overlays
Instead of going to a new page, a mini-page can be displayed in a lightweight layerover the page.
Inlays
Instead of going to a new page, information or actions can be inlaid within the page.
Virtual Pages
By revealing dynamic content and using animation, we can extend the virtual spaceof the page.
Process Flow
Instead of moving from page to page, sometimes we can create a flow within a pageitself.

**

5.4 OVERLAYS

Overlays are really just lightweight pop ups. We use the term lightweight to make a cleardistinction between it and the normal

idea of a browser pop up. Browser pop ups are createdas a new browser window (Figure 5.47).

Fig 5.47 If Orbitz used a browser pop-up window for its calendar chooser, this is how it might look

Fig 5.48 Orbitz uses a lightweight DHTML overlay for its calendar chooser, since it does not require the overhead of a separate

browser window, it can pop up quickly and is better integrated into the page visually

Lightweight overlays are shown within thebrowser page as an overlay (Figure 5.48).

Older style browser pop ups are undesirablebecause:

Browser pop ups display a new browser window.

As a result these windows often taketime and a sizeable chunk of system resources to create.Browser pop ups often display

browser interface controls (e.g., a URL bar). Due tosecurity concerns, in Internet Explorer 7 the URL bar is a permanent fixture

on anybrowser pop-up window.

By using either Flash or Ajax-style techniques (Dynamic HTML), a web applicationcan present a pop up in a lightweight overlay

within the page itself. This has distinctadvantages:

• Lightweight overlays are just a lightweight in-page object. They are inexpensive tocreate and fast to display.

• The interface for lightweight overlays is controlled by the • web application and notthe browser.

• There is complete control over the visual style for the overlay. This allows the overlayto be more visually integrated

into the application’s interface.

• Lightweight overlays can be used for asking questions, obtaining input, introducing features,indicating progress, giving

instructions, or revealing information. They can be activateddirectly by user events (e.g., clicking on an action,

hovering over objects) or beprovided by the web application at various stages in the completion of an action.

We will look at three specific types of overlays: Dialog Overlays, Detail Overlays, andInput Overlays.

Dialog Overlay

Dialog Overlays replace the old style browser pop ups. Netflix provides a clear exampleof a very simple Dialog

Overlay. In the “previously viewed movies for sale” section, a usercan click on a “Buy” button to purchase a DVD. Since the

customer purchasing the DVDis a member of Netflix, all the pertinent shipping and purchasing information is alreadyon record.

The complete checkout experience can be provided in a single overlay (Figure

5.49).

Fig 5.49 Netflix uses a lightweight pop up to confirm a previously viewed DVD purchase; in addition, it uses the Lightbox Effect

to indicate modality

Considerations

Because the overlay is a lightweight pop up, the confirmation can be displayed more rapidlyand the application has

complete control over its look and placement.

Lightbox Effect

One technique employed here is the use of a Lightbox Effect. In photography a lightboxprovides a backlit area to view

slides. On the Web, this technique has come to mean bringingsomething into view by making it brighter than the background. In

practice, this isdone by dimming down the background.

The Lightbox Effect is useful when the Dialog Overlay contains important informationthat the user should not ignore.

Both the Netflix Purchase dialog and the Flickr Rotatedialog are good candidates for the Lightbox Effect. If the overlay contains

optional information,then the Lightbox Effect is overkill and should not be used.

Modality

Overlays can be modal or non-modal. A modal overlay requires the user to interact withit before she can return to the

application.

The Lightbox Effect emphasizes that we are in a separate mode. As a consequence, it isnot needed for most non-modal

overlays. As an example, refer back to theOrbitz calendar pop up. Since the overlay is really more like an in-page widget, it

wouldnot be appropriate to make the chooser feel heavier by using a Lightbox Effect.

Staying in the flow

Overlays are a good way to avoid sending a user to a new page. This allows the user tostay within the context of the

original page. However, since overlays are quick to displayand inexpensive to produce, sometimes they can be tempting to use

too freely, and in theprocess, may actually break the user’s flow.

Detail Overlay

The second type of overlay is somewhat new to web applications. The Detail Overlay allowsan overlay to present

additional information when the user clicks or hovers over alink or section of content. Toolkits now make it easier to create

overlays across differentbrowsers and to request additional information from the server without refreshing thepage.

Taking another example from Netflix, information about a specific movie is displayed asthe user hovers over the movie’s box

shot (Figure 5.50).

Fig 5.50 Netflix shows “back of the box” information in an overlay as the user hovers over a movie’s box shot

Activation

The overlay is displayed when the mouse hovers a box shot. There is about a halfsecond delay after the user pauses

over a movie. The delay on activation prevents users from accidentally activating the overlay as they move the cursor around the

screen. Once the user moves the cursor outside the box shot, the overlay is removed immediately. Removing it quickly gives the

user a fast way to dismiss it without having to look for a Close box.

Anti-pattern: Mouse Traps

It is important to avoid activating the Detail Overlay too easily. We have seen usabilitystudies that removed the delay

in activation, and users reported that the interface was “toonoisy” and “felt like a trap”. We label this anti-pattern the Mouse

Trap.

The reasoning for this is not clear, but Amazon uses the Mouse Trap anti-pattern in one of its “associate widgets”. Original

Motion Picture Soundtrack”activates an overlay providing information on the soundtrack and a purchase option.

Input Overlay

Input Overlay is a lightweight overlay that brings additional input information for eachfield tabbed into. American

Express uses this technique in its registration for premiumcards such as its gold card (Figure 5.51).

Fig 5.51 American Express provides Input Overlays to guide the user through the signup process

Considerations

There are a few things to keep in mind when using Input Overlays.

Clear focus

As the user tabs or clicks from field to field, the field gets wrapped in an overlay. The overlaycontains additional input

help information. This allows the normal display of the formto be displayed in a visually simple manner (just prompts and

inputs). The overlay createsfocus on the given input field. Instead of seeing an ocean of inputs, the user is focused onjust entering

one field.

Display versus editing

When the Input Overlay is shown, the prompt is displayed in exactly thesame manner as when the overlay doesn’t

show. This is critical, as it makes the overlay feeleven more lightweight. If the overlay prompt were bold, for example, the

change wouldbe slightly distracting and take the focus away from input. The only difference betweenthe non-overlay field and

the overlay version is a slightly thicker input field border. Thisdraws the eye to the task at hand—input.

• Field traversal

• Tab navigation

• One-click deactivation

5.5 INLAYS

Not every bit of additional control, information, or dialog with the user needs to be anoverlay. Another approach is to

inlay the information directly within the page itself. Todistinguish from the pop-up overlay, we call these in-page panels Inlays.

Dialog Inlay

A simple technique is to expand a part of the page, revealing a dialog area within the page.

The BBC recently began experimenting with using a Dialog Inlay as a way to reveal customizationcontrols for its home page

(Figure 5.52).

Fig 5.52 The BBC home page put its customization tools in an inlay that slides out when activated

Considerations

Of course an overlay could have been used instead. However, the problem with overlaysis that no matter where they

get placed, they will end up hiding information. Inlays getaround this problem by inserting themselves directly into the context of

the page.

In context

This Dialog Inlay is similar to a drawer opening with a tray of tools. Instead of being takento a separate page to

customize the home page appearance, the user can make changesand view the effects directly. The advantage is the ability to

tweak the page while viewingthe actual page.

List Inlay

Lists are a great place to use Inlays. Instead of requiring the user to navigate to a new pagefor an item’s detail or

popping up the information in an Overlay, the information can beshown with a List Inlay in context. The List Inlay works as an

effective way to hide detailuntil needed—while at the same time preserving space on the page for high-level

overviewinformation.

Google Reader provides an expanded view and a list view for unread blog articles. In thelist view, an individual article can be

expanded in place as a List Inlay (Figure 5.53).

Fig 5.53 In list view, Google Reader shows all articles as a collapsed list – except for the one that is currently selected

Detail Inlay

A common idiom is to provide additional detail about items shown on a page. We saw thiswith the example of the

Netflix movie detail pop up in Chapter 5 (Figure 5-8). Hoveringover a movie revealed a Detail Overlay calling out the back-of-

the-box information.

Details can be shown inline as well. Roost allows house photos to be viewed in-context fora real estate listing with a Detail Inlay.

Combining inlays and overlays

Roost’s solution was to combine several patterns. First, it uses the Hover Reveal, a ContextualTools pattern, to reveal a

set of tools when the user hovers over a listing. Second, ituses the Detail Inlay pattern to show a carousel of photos when the user

clicks on the “Viewphotos” link. And finally, it uses a Detail Overlay to blow up a thumbnail when clicked on.

5.6 VIRTUAL PAGES

Patterns that support virtual pages include:

• Virtual Scrolling

• Inline Paging

• Scrolled Paging

• Panning

• Zoomable User Interface

Virtual Scrolling

The traditional Web is defined by the “page.” In practically every implementation of websites(for about the first 10

years of the Web’s existence) pagination was the key way to getto additional content. Of course, websites could preload data and

allow the user to scrollthrough it. However, this process led to long delays in loading the page. So most sites keptit simple: go

fetch 10 items and display them as a page and let the user request the nextpage of content. Each fetch resulted in a page refresh.

The classic example of this is Google Search. Each page shows 10 results. Moving throughthe content uses the now-

famous Google pagination control.Another approach is to remove the artificial page boundaries created by paginating thedata

with Virtual Scrolling.

Loading status

There are a few downsides to the Yahoo! Mail version of Virtual Scrolling. First, if theloading is slow, it spoils the

illusion that the data is continuous. Second, since the scrollbardoes not give any indication of where users are located in the data,

they have to guess howfar down to scroll. A remedy would be to apply a constantly updating status while the useris scrolling.

Progressive loading

Microsoft has applied Virtual Scrolling to its image search. However, it implements it ina different manner than

Yahoo! Mail. Instead of all content being virtually loaded (andthe scrollbar reflecting this), the scrollbar reflects what has been

loaded.

Inline Paging

By only switching the content in and leaving the rest of the page stable,we can create an Inline Paging experience. This

is what Amazon’s Endless.com site doeswith its search results.

Natural chunking

Inline Paging can also be useful when reading news content online. The InternationalHerald Tribune applied this as a

way to page through an article while keeping the surroundingcontext visible at all times.

Back button

The biggest issue with Inline Paging is whether the back button works correctly. Onecriticism of Endless.com is that if

the user pages through search results and then hits theback button, it jumps to the page just before the search. This unexpected

result could befixed by making the back button respect the virtual pages as well. This is the way Gmail handles the back button.

Clicking back moves we through the virtual pages.

Interactive content loading

The iPhone employs inline paging when displaying search results in the iTunes store.

Scrolled Paging: Carousel

Besides Virtual Scrolling and Virtual Paging, there is another option. We can combineboth scrolling and paging into

Scrolled Paging. Paging is performed as normal. But insteadthe content is “scrolled” into view.

The Carousel pattern takes this approach. A Carousel provides a way to page-in moredata by scrolling it into view. On one hand

it is a variation on the Virtual Scrolling pattern.In other ways it is like Virtual Paging since most carousels have paging controls.

Theadditional effect is to animate the scrolled content into view.

Time-based

Carousels work well for time-based content. Flickr employs a Carousel to let users navigateback and forth through their

photo collection.

Animation direction

Inexplicably, AMCtheatres.com animates its Carousel the opposite way. This leads to aconfusing experience, and it’s

harder to know which control to click.

Virtual Panning

A great place for Virtual Panning is on a map. Google Maps allows us to pan in anydirection by clicking the mouse

down and dragging the map around (Figure 5.54).

Fig 5.54 Google Maps creates a virtual canvas; one tool that helps with that illusion is the ability to pan from area to

area

Zoomable User Interface

 A Zoomable User Interface (ZUI) is another way to create a virtual canvas. Unlike panningor flicking through a flat,

two-dimensional space, a ZUI allows the user to also zoomin to elements on the page. This freedom of motion in both 2D and 3D

supports the conceptof an infinite interface.

Practically speaking, ZUIs have rarely been available in everyday software applications,much less on the Web. But

with more advanced features added to Flash and the adventof Silverlight, this type of interface is starting to emerge and may be

commonplace in thenot-too-distant future.

Paging Versus Scrolling

Leading web designers and companies have taken different approaches to solving thesame problems. Yahoo! Mail

chose Virtual Scrolling. Gmail chose Inline Paging.

How do we choose between paging and scrolling? While there are no hard and fast rules,here are some things to consider when

making the decision:

• When the data feels “more owned” by the user—in other words, the data is not transientbut something users want to

interact with in various ways. If they want to sort

it, filter it, and so on, consider Virtual Scrolling (as in Yahoo! Mail).

• When the data is more transient (as in search results) and will get less and less relevantthe further users go in the data,

Inline Paging works well (as with the iPhone).

• For transient data, if we don’t care about jumping around in the data to specific sections,consider using Virtual

Scrolling (as in Live Image Search).

• If we are concerned about scalability and performance, paging is usually the bestchoice. Originally Microsoft’s Live

Web Search also provided a scrollbar. However,the scrollbar increased server-load considerably since users are more

likely to scrollthan page.

• If the content is really continuous, scrolling is more natural than paging.

• If we get our revenue by page impressions, scrolling may not be an option for our business model.

• If paging causes actions for the content to become cumbersome, move to a scrollingmodel. This is an issue in Gmail.

The user can only operate on the current page.

Changing items across page boundaries is unexpected. Changing items in a continuousscrolled list is intuitive.

**

5.7 PROCESS FLOW

Process Flow Google Blogger

The popular site Google Blogger generally makes it easy to create and publish blogs. Onething it does not make easy, though, is

deleting comments that others may leave on our blog. This is especially difficult when we are the victim of hundreds of spam

commentsleft by nefarious companies hoping to increase their search ranking.

1. Scroll to find the offending comment.

2. Click the trash icon to delete the comment.

3. After page refreshes, click the “Remove Forever” checkbox.

4. Click the “Delete Comment” button.

5. After the page refreshes, click the link to return to my blog article.

6. Repeat steps 1–5 for each article with spam comments.

The Magic Principle

Alan Cooper discusses a wonderful technique for getting away from a technology-drivenapproach and discovering the underlying

mental model of the user. He calls it the “magicprinciple.”* Ask the question, “What if when trying to complete a task the user

could invokesome magic?” For example, let’s look at the problem of taking and sharing photos.

The process for this task breaks down like this:

• Take pictures with a digital camera.

• Sometime later, upload the photos to a photo site like Flickr. This involves:

— Finding the cable.

— Starting iTunes.

— Importing all photos.

—Using a second program, such as Flickr Uploadr, to upload the photos to Flickr.

— Copying the link for a Flickr set (which involves first locating the page for theuploaded set).

• Send the link in email to appropriate friends.

If some magic were invoked, here is how it might happen:

• The camera would be event-aware. It would know that is your daughter’s eighth birthday.

• When finished taking pictures of the event, the camera would upload the pictures toFlickr.

• Flickr would notify family and friends that the pictures of the birthday party areavailable.

Thinking along these lines gets some of the artifacts out of the way. Of course the magiccould be taken to the extreme: just

eliminate the camera altogether! But by leaving someelements in the equation, the potentially unnecessary technology pieces can

be exposed.How about the cable? What if the camera could talk magically to the computer?

Process Flow patterns:

• Interactive Single-Page Process

• Inline Assistant Process

• Configurator Process

• Overlay Process

• Static Single-Page Process

Interactive Single-Page Process

Consumer products come in a variety of shapes, sizes, textures, colors, etc. Online shopperswill not only have to decide

that they want shoes, but do they want blue suede shoes?And what size and width do they want them in? In the end the selection

is constrainedby the available inventory. As the user makes decisions, the set of choices gets more andmore limited.

This type of product selection is typically handled with a multi-page workflow. On onepage, the user selects a shirt and its color

and size. After submitting the choice, a new pageis displayed. Only when the user arrives at this second page does he find out that

the “truenavy” shirt is not available in the medium size.

Benefits

Adobe calls out the Broadmoor one-page reservation interface in its Adobe Showcase.

Itstates the benefits of this method:

• Reduces entire reservation process to a single screen.

• Reduces the number of screens in the online reservation process from five to one.

Other online reservation applications average 5 to 10 screens.

• Seventy-five percent of users choose OneScreen in favor of the HTML version.

• Allows users to vary purchase parameters at will and immediately view results.

• Reduces the time it takes to make a reservation from at least three minutes to lessthan one.

Additionally, Adobe notes that conversion rates (users who make it through the reservationprocess) are much higher with the

Interactive Single-Page Process.

Inline Assistant Process

The Gap employed an Inline AssistantProcess pattern for its shopping cart when it re-launched its site a few years back.

Blending quick and easy with the additional step

Dialog Overlay Process

The Netflix approach just described uses a Dialog Overlay Process to encapsulatea multi-step flow inside a Dialog

Overlay. Discover.com recently expanded its account section with a more detailed profile. The profile captures things like our

payment date, mobile fraud alerts, paperless statements, and general contact information. The overlay pops up when we first enter

our account.

Configurator Process

Sometimes a Process Flow is meant to invoke delight. In these cases, it is the engagementfactor that becomes most

important. This is true with various Configurator Process interfaces on the Web. We can see this especially at play with car

configurators. Porsche provides a configurator that allows users to build their own Porsche.

Static Single-Page Process

Just put the complete flow on one page in a Static Single-Page Process. The user sees allthe tasks needed to complete

the full process. This can be both good and bad. Seeing just one step to complete the process can encourage users to finish the

task. But if the single step seems too long or too confusing, the user will most likely bail out of the process early.

In other words, if placing all the tasks on a single page is enough to cause the user to bail out, it is not a good idea. In the case of

the Apple store, each item is optionally set, and it’s just a single click to include or exclude an item from the purchase.

Case studies for Web interface Design

Online Shopping
UML Use Case Diagram Example

Web Customer actor uses some web site to make purchases online. Top level use

cases are View Items, Make Purchase and Client Register.

 View Items use case could be used by customer as top level use case if customer only wants to

find and see some products. This use case could also be used as a part of Make Purchase use case. Client
Register use case allows customer to register on the web site, for example to get some coupons or be

invited to private sales.

 Note, that Checkout use case is included use case not available by itself - checkout is part of
making purchase.

Online shopping UML use case diagram example - top level use cases.

View Items use case is extended by several optional use cases - customer may search for items,
browse catalog, view items recommended for him/her, add items to shopping cart or wish list. All these

use cases are extending use cases because they provide some optional functions allowing customer to find

item.
Customer Authentication use case is included in View Recommended Items and Add to Wish

List because both require the customer to be authenticated. At the same time, item could be added to the

shopping cart without user authentication.

Online shopping UML use case diagram example - view items use case.

http://www.uml-diagrams.org/use-case-actor.html
http://www.uml-diagrams.org/use-case.html
http://www.uml-diagrams.org/use-case.html
http://www.uml-diagrams.org/use-case-include.html
http://www.uml-diagrams.org/use-case-extend.html
http://www.uml-diagrams.org/use-case-include.html

Checkout use case includes several required uses cases. Web customer should be authenticated.
It could be done through user login page, user authentication cookie ("Remember me") or Single Sign-On

(SSO). Web site authentication service is used in all these use cases, while SSO also requires participation

of external identity provider.

Checkout use case also includes Payment use case which could be done either by using credit
card and external credit payment service or with PayPal.

This UML use case diagram example shows some use cases for a system which processes credit cards.

Credit Card Processing System (aka Credit Card Payment Gateway) is a subject, i.e. system under
design or consideration. Primary actor for the system is a Merchant’s Credit Card Processing System.

The merchant submits some credit card transaction request to the credit card payment gateway on behalf

of a customer. Bank which issued customer's credit card is actor which could approve or reject the
transaction. If transaction is approved, funds will be transferred to merchant's bank account.

Authorize and Capture use case is the most common type of credit card transaction. The requested

amount of money should be first authorized by Customer's Credit Card Bank, and if approved, is

further submitted for settlement. During the settlement funds approved for the credit card transaction are
deposited into the Merchant's Bank account.

In some cases, only authorization is requested and the transaction will not be sent for settlement.

In this case, usually if no further action is taken within some number of days, the authorization expires.
Merchants can submit this request if they want to verify the availability of funds on the customer’s credit

card, if item is not currently in stock, or if merchant wants to review orders before shipping.

Capture (request to capture funds that were previously authorized) use case describes several scenarios
when merchant needs to complete some previously authorized transaction - either submitted through the

payment gateway or requested without using the system, e.g. using voice authorization.

UML use case diagram example for a credit cards processing system.

Credit use case describes situations when customer should receive a refund for a transaction that
was either successfully processed and settled through the system or for some transaction that was not

originally submitted through the payment gateway.

Void use case describes cases when it is needed to cancel one or several related transactions that were not
yet settled. If possible, the transactions will not be sent for settlement. If the Void transaction fails, the

original transaction is likely already settled.

Verify use case describes zero or small amount verification transactions which could also include

verification of some client's data such as address.

http://www.uml-diagrams.org/use-case-subject.html
http://www.uml-diagrams.org/use-case-actor.html

Online shopping UML use case diagram example - checkout, authentication and payment use cases.

xcept for administrators, some part of the administrative interfaces should be also available to the Help
desk staff, as they need to be able to assist customers having issues while using the customer oriented

website.

Top level use case diagram below shows some administrative functions that administration website could

provide.
Two actors using administrative interfaces are Website Administrator and Help Desk. Help

Desk uses a subset of functions available to the Website Administrator. All top level use cases shown are

abstract as each represents some group or "package" of administrative functionality.

Top level use case diagram for the administration website.

Manage User Groups abstract use case is specialized by Create Group, Update Group, and Delete

Group use cases. The idea is that website administrator could create different user groups, for example,

having different privileges or options, and later some user groups could be modified or even deleted.

http://www.uml-diagrams.org/use-case-actor.html
http://www.uml-diagrams.org/use-case.html

User group management use case diagram for the administration website.

User management use cases are available both to the Website Administrator and to the Help

Desk. There is standard user CRUD (Create, Retrieve/Find, Update, Delete) functionality set.

Two other use cases, Lock User and Unlock User are specific to website security. For example,

if during some predefined period of time there were several unsuccessful login attempts using wrong user
password, user account should be locked for some predefined time to prevent possible brute force

password guessing attack.

This locking and unlocking is usually done automatically by intrusion detection or website
authentication subsystem, but this functionality needs to be available in the manual mode too, just in case.

For example, some user might call and ask to lock his or her account.

User management use case diagram for the administration website.

User session is created either for each new incoming request that is not yet part of a session, or/and after

user was authenticated. Website administrator should have ability to see how many sessions were created,

including some statistics about sessions, to find some specific session and see status of that session, and to
cancel (delete) some session, if required.

User sessions management use case diagram for the administration website.

List of administrative functions included in the log management depend on the security
requirements supported and implemented by the website.

It is a standard security requirement (e.g., see OWASP Guide 2.0) for the logs that new records

can be only appended while older log records should not be rewritten or deleted. It could be implemented
e.g. by writing logs to a write once / read many (WORM) device such as a CD-R.

http://www.uml-diagrams.org/references.html#ref-owasp-guide-20

Website administrator should be able to see status of logs. The status could include verification
that logging is still functional (there is enough space on disk and/or connection to database is not stale),

and that older log files are on schedule being moved to a permanent storage for archiving.

Logs management use case diagram for the administration website.

It is also common requirement to allow website administrator to find and see some log records related to a
specific user or an exceptional situation.

UML Class Diagram Example

Each customer has unique id and is linked to exactly one account. Account owns shopping cart

and orders. Customer could register as a web user to be able to buy items online. Customer is not required

to be a web user because purchases could also be made by phone or by ordering from catalogues. Web
user has login name which also serves as unique id.

 Web user could be in several states - new, active, temporary blocked, or banned, and be linked to

a shopping cart. Shopping cart belongs to account.

Online shopping domain UML class diagram example.

Account owns customer orders. Customer may have no orders. Customer orders are sorted and
unique. Each order could refer to several payments, possibly none. Every payment has unique id and is

related to exactly one account.

Each order has current order status. Both order and shopping cart have line items linked to a
specific product. Each line item is related to exactly one product. A product could be associated to many

line items or no item at all.

UML Sequence Diagram Example

An example of high level sequence diagram for online bookshop. Online customer can search book

catalog, view description of a selected book, add book to shopping cart, do checkout.

An example of UML sequence diagram for online bookshop.

UML Activity Diagram Example

An example of activity diagram for online shopping. Online customer can browse or search

items, view specific item, add it to shopping cart, view and update shopping cart, checkout. User can view
shopping cart at any time. Checkout is assumed to include user registration and login.

An example of UML activity diagram for online shopping.

http://www.uml-diagrams.org/sequence-diagrams.html
http://www.uml-diagrams.org/activity-diagrams.html

Web Application

Network Diagram Example

UML provides no special kind of diagram to describe logical or physical network

architecture of the designed or existing system. Deployment diagramscould be used for this purpose

with elements limited mostly to devices with neither artifacts nor actual deployments shown.

The example of the network diagram below shows network architecture with configuration usually called

"two firewall demilitarized zone". Demilitarized zone (DMZ) is a host or network segment located in a
"neutral zone" between the Internet and an organization’s intranet (private network). It prevents outside

users from gaining direct access to an organization’s internal network while not exposing a web, email or

DNS server directly to the Internet.

An example of networking diagram for web application with two firewall DMZ configuration.

A two firewall DMZ configuration with complex security rules provides better protection over a
router firewall DMZ configuration and is often able to analyze incoming and outgoing HTTP traffic and

protect against application layer attacks aimed at the web servers.

Load balanced web servers shown in the DMZ communicate to the application and database
servers located in the private network (intranet).

http://www.uml-diagrams.org/deployment-diagrams-overview.html
http://www.uml-diagrams.org/deployment-diagrams.html#device

	Case studies for Web interface Design
	Online Shopping
	UML Use Case Diagram Example
	UML Class Diagram Example
	UML Sequence Diagram Example
	UML Activity Diagram Example

	Web Application
	Network Diagram Example

